• 제목/요약/키워드: Cell-cycle

검색결과 2,824건 처리시간 0.028초

Synthetic Homoisoflavane Derivatives of Cremastranone Suppress Growth of Colorectal Cancer Cells through Cell Cycle Arrest and Induction of Apoptosis

  • Shin, Ha-Eun;Lee, Seul;Choi, Yeram;Park, Sangkyu;Kwon, Sangil;Choi, Jun-Kyu;Seo, Seung-Yong;Lee, Younghee
    • Biomolecules & Therapeutics
    • /
    • 제30권6호
    • /
    • pp.576-584
    • /
    • 2022
  • Colorectal cancer is diagnosed as the third most prevalent cancer; thus, effective therapeutic agents are urgently required. In this study, we synthesized six homoisoflavane derivatives of cremastranone and investigated their cytotoxic effects on the human colorectal cancer cell lines HCT116 and LoVo. We further examined the related mechanisms of action using two of the potent compounds, SH-19027 and SHA-035. They substantially reduced the cell viability and proliferation in a dose-dependent manner. Treatment with SH-19027 and SHA-035 induced cell cycle arrest at the G2/M phase and increased expression of p21 both of which are implicated in cell cycle control. In addition, the apoptotic cell population and apoptosis-associated marker expression were accordingly increased. These results suggest that the synthesized cremastranone derivatives have anticancer effects through the suppression of cell proliferation and induction of apoptosis. Therefore, the synthesized cremastranone derivatives could be applied as novel therapeutic agents against colorectal cancer.

고체 산화물 연료전지의 열사이클 따른 성능 열화 특성 연구 (A Study on Thermal Cycle Characteristics of Solid Oxide Fuel Cell)

  • 김응용;송락현;전광선;신동열;강대갑
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1312-1314
    • /
    • 1998
  • SOFC system is often subject to thermal cycle condition during normal start/stop, shutdown, and emergence state. Under the thermal cycle condition of heating and cooling, the SOFC components expand or shrink, which produces thermal stress and thermal shock. The SOFC performance is degraded by the thermal factors. To protect SOFC system from the thermal degradation, the optimum thermal condition must be clarified. In this study, to examine the thermal cycle characteristics, we fabricated single cells of planar SOFC with an area of $5{\times}5cm$. The electrolyte and PEN were tested under thermal cycle conditions in the range of$ 2-8^{\circ}C/min$. After thermal cycle test. crack creation of the components were examined using ultraviolet apparatus. No crack in the electrolyte and PEN were observed. The single cell system with alumina frame were also tested under thermal cycle conditions of 2, 3, $4^{\circ}C/min$. The single cell was fractured at the thermal cycle of 3 and $4^{\circ}C/min$ and the optimum condition of the thermal cycle to be found below $2^{\circ}C/min$.

  • PDF

녹용이 치주인대세포의 세포주기조절에 미치는 영향 (Effects of Cervi Parvum Cornu on the Cell Cycle Regulation in Human Periodontal Ligament Cells)

  • 유승한;최희인;김현아;김윤상;신형식;유형근
    • 동의생리병리학회지
    • /
    • 제17권1호
    • /
    • pp.157-164
    • /
    • 2003
  • Cervi Parvum Cornu(CPC) is that the young horn of deer family and has been traditionally used as a medicine in Eastern. The purpose of present study was to investigate the effects of CPC on cell cycle progression and its molecular mechanism in human periodontal ligament cells (HPOLC). In cell proliferation assay, 1 ng/ml, 10 ng/ml, 100 ng/ml, 1 ㎍/ml and 10 ㎍/ml of CPC were used, all treatment groups increased the cell growth. Maximal cell proliferation was observed in cells exposed to 100 ng/ml of CPC at 4 day, and 10 ng/ml and 100 ng/ml of CPC at 6 days. S phase was increased and G1 phase was decreased in the group treated with 100 ng/ml of CPC in cell cycle analysis. The protein levels of cyclin D1 were not changed, but the levels of cyclin E, cdk 2, cdk 4 and cdk 6 were increased. The protein levels of p21, pRb were decreased as compared to that of control group, but the levels of p53 was not changed in the cells both treated with CPC Md untreated. These results suggested that CPC increases the cell proliferation and cell cycle progression in HPDLC, which is linked to an increased cellular levels of cyclin E, cdk 2, cdk 4 and cdk 6, and decreased the levels of p53, p21.

Growth Inhibition and G2/M Phase Cell Cycle Arrest by 3,4,5-Trimethoxy-4'-bromo-cis-stilbene in Human Colon Cancer Cells

  • Heo, Yeon-Hoi;Min, Hye-Young;Kim, Sang-Hee;Lee, Sang-Kook
    • Biomolecules & Therapeutics
    • /
    • 제15권2호
    • /
    • pp.95-101
    • /
    • 2007
  • Resveratrol (3,5,4’-trihydroxy-trans-stilbene), a naturally occurring phytoallexin abundant in grapes and several plants, has been shown to be active in inhibiting proliferation and inducing apoptosis in several human cancer cell lines. On the line of the biological activity of resveratrol, a variety of resveratrol analogs were synthesized and evaluated for their growth inhibitory effects against several human cancer cell lines. In the present study, we found that one of the resveratrol analogs, 3,4,5-trimethoxy-4’-bromo-cis-stilbene, markedly suppressed human colon cancer cell proliferation (EC$_{50}$ = 0.01 ${\mu}$g/ml), and the inhibitory activity was superior to its corresponding trans-isomer (EC$_{50}$ = 1.6 ${\mu}$g/ml) and resveratrol (EC$_{50}$ = 18.7 ${\mu}$g/ml). Prompted by the strong growth inhibitory activity in cultured human colon cancer cells (Col2), we investigated its mechanism of action. 3,4,5-Trimethoxy-4’-bromo-cis-stilbene induced arrest of cell cycle progression at G2/M phase and increased at sub-G1 phase DNA contents of the cell cycle in a time- and dose-dependent manner. Colony formation was also inhibited in a dose-dependent manner, indicating the inhibitory activity of the compound on cell proliferation. Moreover, the morphological changes and condensation of the cellular DNA by the treatment of the compound were well correlated with the induction of apoptosis. These data suggest the potential of 3,4,5-trimethoxy-4’-bromo-cis-stilbene might serve as a cancer chemotherapeutic or chemopreventive agent by virtue of arresting the cell cycle and inducing apoptosis for the human colon cancer cells.

New HDAC inhibitor, IN2001 induces apoptosis/cell cycle arrest in human breast cancer cells

  • Joung, Ki-Eun;Min, Kyung-Nan;Cho, Min-Jung;An, Jin-Young;Kim, Dae-Ki;Sheen, Yhun-Yhong
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.90-90
    • /
    • 2003
  • The acetylation of histone is one of the mechanisms involved in the regulation of gene expression and is tightly controlled by two core enzymes, histone acetyltransferase (HAT) and deacetylase (HDAC). There are several reports that imbalance of HAT and HDAC activity is associated with abnormal behavior of the cells in morphology, cell cycle, differentiation, and carcinogenesis. Recently, an increasing number of structurally diverse HDAC inhibitors have been identified that inhibit proliferation and induce differentiation and/or apoptosis of tumor cells in vivo and in vitro. In this study, we have investigated the effects of novel HDAC inhibitors, IN2001 on ER positive and ER negative human breast cancer cell lines. The growth inhibition, cell cycle arrest and apoptosis of cells by HDAC inhibitors were determined using SRB assay, DNA fragmentation, and flow cytometry. We found that IN 2001 as well as Trichostatin A inhibited cell growth dose-dependently in both ER positive and ER negative human breast cancer cell lines. The growth inhibition with HDAC inhibitors was associated with profound morphological change. The result of cell cycle analysis after 24 h exposure of IN2001 showed G2-M cell cycle arrest in MCF-7 cell and apoptosis in T47D and MDA-MB-231 cell. In summary, IN2001 has antiproliferative effect on human breast cancer cells regardless of the expression of estrogen receptor. These findings heights the possibility of developing HDAC inhibitors as potential anticancer therapeutic agents for the treatment of breast cancer.

  • PDF

두경부 편평세포암종에서 상피성장인자수용체의 발현과 세포주기에 관한 연구 (EXPRESSION OF THE EPIDERMAL GROWTH FACTOR RECEPTOR AND CELL CYCLE ANALYSIS IN THE HEAD AND NECK SQUAMOUS CELL CARCINOMAS)

  • 김경원;김명진
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제26권2호
    • /
    • pp.154-163
    • /
    • 2000
  • Growth factors and the receptors play an important role in the regulation of the growth and development of mammalian cells. In particular, epidermal growth factor is a polypeptide with potent mitogenic activity that stimulates proliferation of various normal and neoplastic cells through the interaction with its specific receptor(EGFR). EGFR has been described as a parameter of poor prognosis in many human neoplasms such as breast, bladder, and vulvar cancers. The objectives of this study are the evaluation of the expression of EGFR and cell cycle analysis in the head and neck squamous cell carcinomas(SCC), and the evaluation of the correlation between clinico-patholgic features and expression of EGFR and S-phase fraction. 37 head and neck squamous cell carcinoma specimens were evaluated for expression of EGFR by Western blot analysis and S-phase fraction by cell cycle analysis using the flow cytometry. The obtained results were as follows : 1. The expressions of EGFR were observed in 20 specimens(54%) among 37 head and neck SCC specimens. In case of oral SCC, 15 specimens(56%) out of 27 specimens were observed, and in case of nasopharyngeal SCC 5 specimens(50%) out of 10 specimens. 2. There was no correlation between clinical features(location, stage) of head and neck SCC and expression of EGFR (p>0.05). 3. There was a significant correlation between histo-pathological differentiation of head and neck SCC and expression of EGFR (p<0.02). 4. There was a significant correlation between expression of EGFR and S-phase fraction of cell cycle in the head and neck SCC (p<0.05). The above results suggest that expression of EGFR and S-phase fraction of cell cycle are adjunctive prognostic marker in the head and neck squamous cell carcinomas.

  • PDF

New HDAC inhibitor, IN2001 induces apoptosis/cell cycle arrest in human breast cancer cells

  • Euno, Joung-Ki;Nan, Min-Kyung;Jung, Cho-Min;Young, An-Jin;Kim, -Dae-Ki;Yhong, Sheen-Yhun
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2003년도 추계국제학술대회
    • /
    • pp.180-180
    • /
    • 2003
  • The acetylation of histone is one of the mechanisms involved in the regulation of gene expression and is tightly controlled by two core enzymes, histone acetyltransferase (HAT) and deacetylase (HDAC). There are several reports that imbalance of HAT and HDAC activity is associated with abnormal behavior of the cells in morphology, cell cycle, differentiation, and carcinogenesis. Recently, an increasing number of structurally diverse HDAC inhibitors have been identified that inhibit proliferation and induce differentiation and/or apoptosis of tumor cells in vivo and in vitro. In this study, we have investigated the effects of novel HDAC inhibitors, IN2001 on ER positive and ER negative human breast cancer cell lines. The growth inhibition, cell cycle arrest and apoptosis of cells by HDAC inhibitors were determined using SRB assay, DNA fragmentation, and flow cytometry. We found that IN 2001 as well as Trichostatin A inhibited cell growth dose-dependently in both ER Positive and ER negative human breast cancer cell lines. The growth inhibition with HDAC inhibitors was associated with profound morphological change. The result of cell cycle analysis after 24 h exposure of IN2001 showed G2-M cell cycle arrest in MCF-7 cell and apoptosis in T47B and MDA-MB-231 cell. In summary, IN2001 has antiproliferative effect on human breast cancer cells regardless of the expression of estrogen receptor. These findings heights the possibility of developing HDAC inhibitors as potential anticancer therapeutic agents for the treatment of breast cancer.

  • PDF

혈부축어탕(血府逐瘀湯) 자궁근종세포의 증식억제와 Apoptosis 관련 유전자 발현에 미치는 영향 (Effect of Hyulbuchukeotang on the Inhibition of Proliferation of Uterine leiomyoma cells and Cell apoptosis)

  • 문나영;백승희;김동철
    • 대한한방부인과학회지
    • /
    • 제19권2호
    • /
    • pp.186-198
    • /
    • 2006
  • Purpose : The purpose of this study is to demonstrate the direct inhibitory effect of Hyulbuchukeotang on the proliferation of uterine leiomyoma cells through an experiment treating uterine leiomyoma cells cultivated by explantation with indicated concentrations of Hyulbuchukeotang and to research the gene expression related to cell cycle ill order to discover the connection with apoptosis and its mechanism by analyzing cell cycle. Methods : After primary culture of uterine leiomyoma cells, the cultivated uterine leiomyoma cells were treated with indicated concentrations of Hyulbuchukeotang for 24 hours. The inhibitory effect on the cell proliferation was determined by the cell count assay. The value of a cell count assay represent the percentage of cells in a phase of the cell cycle compared with total cells. In addition, a link between Hyulbuchukeotang and apoptosis was examined through flow cytometric analysis by FACS and DNA fragmentation analysis. Finally, the degree of gene expression related to cell cycle was evaluated by Western blot analysis. Results : The inhibitory effect of Hyulbuchukeotang increase of uterine leiomyoma cells treated with indicated concentrations of Hyulbuchkeotang increases. The result of gene expression related to G1 phase after treating with 100, 250, 500, 1,000 ${\mu}g/ml$ concentrations of Hyulbuchukeotang. on uterine leiomyoma cells is that the gene expression of p27 was increased but that of p53 an p21 remained unchanged and the gene of pRB, pro-caspase 3 was decreased. Conclusion Through the mentioned experiments, it is demonstrated that Hyulbuchkeotang is effective in inhibiting Proliferation of uterine leiomyoma cells by extending cell cycle G1. However it is not considered that the inhibitory effect results from the aptoposis.

  • PDF

FAM46B inhibits cell proliferation and cell cycle progression in prostate cancer through ubiquitination of β-catenin

  • Liang, Tao;Ye, Xuxiao;Liu, Yuanyuan;Qiu, Xinkai;Li, Zuowei;Tian, Binqiang;Yan, Dongliang
    • Experimental and Molecular Medicine
    • /
    • 제50권12호
    • /
    • pp.8.1-8.12
    • /
    • 2018
  • FAM46B is a member of the family with sequence similarity 46. Little is known about the expression and functional role (s) of FAM46B in prostate cancer (PC). In this study, the expression of FAM46B expression in The Cancer Genome Atlas, GSE55945, and an independent hospital database was measured by bioinformatics and real-time PCR analysis. After PC cells were transfected with siRNA or a recombinant vector in the absence or presence of a ${\beta}$-catenin signaling inhibitor (XAV-939), the expression levels of FAM46B, C-myc, Cyclin D1, and ${\beta}$-catenin were measured by western blot and realtime PCR. Cell cycle progression and cell proliferation were measured by flow cytometry and the CCK-8 assay. The effects of FAM46B on tumor growth and protein expression in nude mice with PC tumor xenografts were also measured. Our results showed that FAM46B was downregulated but that ${\beta}$-catenin was upregulated in patients with PC. FAM46B silencing promoted cell proliferation and cell cycle progression in PC, which were abrogated by XAV-939. Moreover, FAM46B overexpression inhibited PC cell cycle progression and cell proliferation in vitro and tumor growth in vivo. FAM46B silencing promoted ${\beta}$-catenin protein expression through the inhibition of ${\beta}$-catenin ubiquitination. Our data clearly show that FAM46B inhibits cell proliferation and cell cycle progression in PC through ubiquitination of ${\beta}$-catenin.

Gallic Acid Hindered Lung Cancer Progression by Inducing Cell Cycle Arrest and Apoptosis in A549 Lung Cancer Cells via PI3K/Akt Pathway

  • Ko, Eul-Bee;Jang, Yin-Gi;Kim, Cho-Won;Go, Ryeo-Eun;Lee, Hong Kyu;Choi, Kyung-Chul
    • Biomolecules & Therapeutics
    • /
    • 제30권2호
    • /
    • pp.151-161
    • /
    • 2022
  • This study elucidates the anti-cancer potential of gallic acid (GA) as a promising therapeutic agent that exerts its effect by regulating the PI3K/Akt pathway. To prove our research rationale, we used diverse experimental methods such as cell viability assay, colony formation assay, tumor spheroid formation assay, cell cycle analysis, TUNEL assay, Western blot analysis, xenograft mouse model and histological analysis. Treatment with GA inhibited cell proliferation in dose-dependent manner as measured by cell viability assay at 48 h. GA and cisplatin (CDDP) also inhibited colony formation and tumor spheroid formation. In addition, GA and CDDP induced apoptosis, as determined by the distribution of early and late apoptotic cells and DNA fragmentation. Western blot analysis revealed that inhibition of the PI3K/Akt pathway induced upregulation of p53 (tumor suppressor protein), which in turn regulated cell cycle related proteins such as p21, p27, Cyclin D1 and E1, and intrinsic apoptotic proteins such as Bax, Bcl-2 and cleaved caspase-3. The anti-cancer effect of GA was further confirmed in an in vivo mouse model. Intraperitoneal injection with GA for 4 weeks in an A549-derived tumor xenograft model reduced the size of tumor mass. Injection of them downregulated the expression of proliferating cell nuclear antigen and p-Akt, but upregulated the expression of cleaved caspase-3 in tumor tissues. Taken together, these results indicated that GA hindered lung cancer progression by inducing cell cycle arrest and apoptosis, suggesting that GA would be a potential therapeutic agent against non-small cell lung cancer.