• Title/Summary/Keyword: Cell-based assay

Search Result 663, Processing Time 0.033 seconds

A Possible Role of Fibronectin on the Differentiation of Monocyte to Macrophase (단핵구 분화에 대한 Fibronectin 및 그 단편의 역할)

  • Ok Sun Bang;You
    • The Korean Journal of Zoology
    • /
    • v.36 no.4
    • /
    • pp.514-521
    • /
    • 1993
  • Monocyte interaction with fibronectin (FN) mediates specific cell surface receptors and results in cell attachment and differentiation. Several cell-mediated activities for various fragments of FN have been documented. To investigate the regulatory mechanisms of monocyte differentiation by cell binding domains of FN and their receptors, cell attachment-, cell migration-, and its respective inhibition assay were carried out. Monocyte recognizes 38-kDa domain distinctively from its recognition of 85-kDa domain, and the heparin-binding site of the 38-kDa fragment is not involved in monocyte adhesion. Based on these experimental results, it can be suggested that monocvte/macrophase interacts with at least two different sites in FN, which is critical step in cell adhesion and (or) migration.

  • PDF

The effects of ascorbic acid on the morphology and cell proliferation of three-dimensional stem cell spheroids (아스코르브산의 3차원 줄기세포 배양체에 대한 증식 및 분화 효과 분석)

  • Lee, Hyunjin;Yeo, Seong-Il;Park, Jun-Beom
    • The Journal of the Korean dental association
    • /
    • v.55 no.9
    • /
    • pp.592-603
    • /
    • 2017
  • Purpose: The effects of various concentrations of ascorbic acid on stem cell spheroids derived from intraoral areas are not known yet. Thus, the purpose of this study is to evaluate the effects of different concentrations of ascorbic acid on the morphology and cellular viability of stem cell spheroids derived from the gingival tissues. Materials and Methods: Stem cells were plated onto silicon elastomer-based concave microwells and grown in the presence of ascorbic acid at concentrations ranging from 0.003% to 0.3%. The morphology of the cells was viewed under an inverted microscope at day 1, 2, 3 and 5. Qualitative live/dead assay and quantitative cellular viability using Cell Counting Kit-8 were performed on day 2 and day 5. Results: Gingiva-derived stem cells formed spheroids irrespective of ascorbic acid concentration in silicon elastomer-based concave microwells. Increase in the diameter of spheroid were seen with higher concentrations of ascorbic acid. Higher cellular viability was seen in higher concentrations of ascorbic acid. Conclusion: Within the experimental setting, the application of ascorbic acid on stem-cell spheroids produced an increase in the size and higher viability with higher dosage. It can be suggested ascorbic acid be applied with stem cell spheroids for tissue engineering purposes.

  • PDF

Effect of Various Factors on Early THP-1 Cell Adhesion Induced Phorbol 12-Myristate 13-Acetate (PMA) (Phorbol 12-myristate 13-acetate (PMA) 처리로 유도되는 THP-1 세포의 초기 부착에 관한 다양한 인자의 효과)

  • Jo, Yong-Sam;Shin, Ji-Hyun;Choi, Tae-Saeng
    • Journal of Life Science
    • /
    • v.18 no.7
    • /
    • pp.952-957
    • /
    • 2008
  • We evaluated the effects of various factors (e.g., serum, inhibitors of protein synthesis, and cytoskeleton and protein kinases) on early PMA-induced THP-1 cell adhesion using an adhesion assay with Sulforhodamine B (SRB) staining, which was used to assess the proliferation of the attached cells. THP-1 cell adhesion to a plastic substrate was detected 1 hr after exposure to Phorbol 12-Myristate 13-Acetate (PMA) and peaked after 18 hr. At concentrations > 25 nM PMA, the level of adhesion did not change. Based on our preliminary results, we used 25 nM PMA and 5 hr of culture as standard assay conditions. Early PMA-induced cell adhesion was not affected by the presence of serum or PD 98059 in the culture medium, but was affected by the addition of PKC inhibitors and cycloheximide. In the presence of actin inhibitor with PMA, the cell adhesion increased when comparing with PMA treatment only. Thus, early PMA-induced adhesion of THP-1 cells does not require serum in the culture medium, MAP-kinase activation, or actin polymerization, but does require de novo protein synthesis and PKC activation. Our SRB-based cell adhesion assay may be used to screen other PKC inhibitors.

Respection of Pectic Enzymes Among the Hydrolysis Enzymes of Plant Cell Wall (식물세포벽 가수분해효소 중 펙틴계효소에 대한 고찰)

  • 최동원;김인규
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.1
    • /
    • pp.92-98
    • /
    • 1996
  • Pectic materials, which are widely spread in the plant cell wall as plant carbohydrates, plays a great role in food Industry that acts as a softening agent of fruits and vegetables, and gel forming agents. To study physiochemical properties and industrial applications of pectic enzymes that hydrolyzes pectin, classification, assay method and Industrial application are reviewed based on previous results.

  • PDF

Virus-cell fusion inhibitory compounds from Ailanthus altissima Swingle

  • Lee, Hyang-Hee;Chang, Young-Su;Moon, Young-Hee;Woo, Eun-Rhan
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.264.1-264.1
    • /
    • 2003
  • In order to search for the anti-HIV agents from natural products, Eighty MeOH extracts of medicinal plants were applied to a syncytia formation inhibition assay which is based on the interaction between the HIV-1 envelope glycoprotein gp120/gp41 and the cellular membrane protein CD4 of T lymphocytes. Among them, Ailanthus altissima showed a potent virus-cell fusion inhibitory activity. (omitted)

  • PDF

Antitumor Effects of Kluyveromyces marxianus TFM-7 Isolated from Kefir

  • Lee, Hyun-Jung;Nam, Bo-Ra;Kim, Jin-Man;Kim, Ji-Yeon;Paik, Hyun-Dong;Kim, Chang-Han
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.133-137
    • /
    • 2007
  • The Strain TFM-7, Which has an antitumor effect, was isolated from Kefir and identified based on analysis using the API 50 CHL kit and 265 rDNA sequencing. Strain TFM-7 was confirmed to belong to the genus Kluyveromyces. Analysis of the 265 rDNA nucleotide sequences found strain TFM-7 to be related to Kluyveromyces marxianus. NRRL Y-828IT. K. marxianus. TFM-7 was cultured with potato dektrose broth medium at $27^{\circ}C$ for 72 hr, and its inhibition effects on the proliferation of seven tumor cell lines and a normal cell line were assessed using the MTT assay. The antitumor effects and growth characteristics of K. marxianus TFM-7 were investigated during a culture period of 7 days. By the $3^{rd}\;day$, K. marxianus TFM-7 showed a dry cell weight 2.39 g/L, a pH of 4.39, an ethanol content of 0.89%, and an inhibition effect on the proliferation of seven tumor cell lines above 50%, except for A-549 tumor cell line. K. marxianus TFM-7 was the most effective at inhibiting the growth of Hep-2 cell line among all tumor cell lines tested. Growth inhibition of a normal cell line, NIH/3T3, was less than 35%, suggesting a decreased level of cytotoxicity toward normal cells. These results indicate that K. marxianus TFM-7 may have used as a yeast strain with antitumor activity.

Genotoxicity Assessment of Erythritol by Using Short-term Assay

  • Chung, Young-Shin;Lee, Michael
    • Toxicological Research
    • /
    • v.29 no.4
    • /
    • pp.249-255
    • /
    • 2013
  • Erythritol is a sugar alcohol that is widely used as a natural sugar substitute. Thus, the safety of its usage is very important. In the present study, short-term genotoxicity assays were conducted to evaluate the potential genotoxic effects of erythritol. According to the OECD test guidelines, the maximum test dose was 5,000 ${\mu}g$/plate in bacterial reverse mutation tests, 5,000 ${\mu}g/ml$ in cell-based assays, and 5,000 mg/kg for in vivo testing. An Ames test did not reveal any positive results. No clastogenicity was observed in a chromosomal aberration test with CHL cells or an in vitro micronucleus test with L5178Y $tk^{+/-}$ cells. Erythritol induced a marginal increase of DNA damage at two high doses by 24 hr of exposure in a comet assay using L5178Y $tk^{+/-}$ cells. Additionally, in vivo micronucleus tests clearly demonstrated that oral administration of erythritol did not induce micronuclei formation of the bone marrow cells of male ICR mice. Taken together, our results indicate that erythritol is not mutagenic to bacterial cells and does not cause chromosomal damage in mammalian cells either in vitro or in vivo.

Verification of the Physiological Activity of Geranium thunbergii Extract and Anti-inflammatory Activity in Raw 264.7 Cells (현지초(Geranium thunbergii) 추출물의 생리활성 및 Raw 264.7 cells에서의 항염활성 검증)

  • Seung-Mi Park;Min-Jeong Oh;Jin-Young Lee
    • Journal of Life Science
    • /
    • v.34 no.1
    • /
    • pp.28-36
    • /
    • 2024
  • We evaluated the efficacy of Geranium thunbergii (GT), which has so far been understudied as a cosmetic material, and conducted anti-inflammatory-related activity studies. We measured the electron donation ability and ABTS+ radical scavenging ability to confirm the antioxidant ability of GT and found values of 91% and 94% at a concentration of 50 ㎍/ml, respectively, confirming that GT had excellent antioxidant ability. Tyrosinase inhibitory activity was measured to evaluate whitening activity, and it was found that inhibitory activity was 24.8% at the highest concentration of 1,000 ㎍/ml. Elastase and collagenase inhibitory activity were measured to determine the wrinkle improvement activity of the GT; 30.6% and 90% inhibitory activity were shown at the highest concentration of 1,000 ㎍/ml, respectively. Excellent inhibitory activity was confirmed through the measurement of collagenase inhibitory activity. Before the cell experiments were conducted, the survival rate of the macrophages Raw 264.7 according to GT treatment was determined based on the MTT assay, and the cell survival rate was greater than 83.6% at a concentration of 100 ㎍/ml. Subsequent cell-related experiments were conducted at concentrations of 100 ㎍/ml or less. The NO production inhibitory activity according to the GT treatment by NO assay was measured, and a 74.9% inhibitory rate was confirmed at a concentration of 100 ㎍/ml. Western blotting was performed to determine protein expression inhibition, and both COX-2 and iNOS factors were concentration-dependently inhibited in GT. Based on these results, GT is considered to have potential as an anti-inflammatory functional cosmetic material.

TaqMan Probe Real-Time PCR for Quantitative Detection of Mycoplasma during Manufacture of Biologics (생물의약품 제조공정에서 마이코플라스마 정량 검출을 위한 TaqMan Probe Real-Time PCR)

  • Lee, Jae Il;Kim, In Seop
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.361-371
    • /
    • 2014
  • Mycoplasma is well recognized as one of the most prevalent and serious microbial contaminants of biologic manufacturing processes. Conventional methods for mycoplasma testing, direct culture method and indirect indicator cell culture method, are lengthy, costly and less sensitive to noncultivable species. In this report, we describe a new TaqMan probe-based real-time PCR method for rapid and quantitative detection of mycoplasma contamination during manufacture of biologics. Universal mycoplasma primers were used for mycoplasma PCR and mycoplasma DNA was quantified by use of a specific TaqMan probe. Specificity, sensitivity, and robustness of the real-time PCR method was validated according to the European Pharmacopoeia. The validation results met required criteria to justify its use as a replacement for the culture method. The established real-time PCR assay was successfully applied to the detection of mycoplasma from human keratinocyte and mesenchymal stem cell as well as Vero cell lines artificially infected with mycoplasma. The overall results indicated that this rapid, specific, sensitive, and robust assay can be reliably used for quantitative detection of mycoplasma contamination during manufacture of biologics.

Statistical Optimization of the Lysis Agents for Gram-negative Bacterial Cells in a Microfluidic Device

  • Kim, Young-Bum;Park, Ji-Ho;Chang, Woo-Jin;Koo, Yoon-Mo;Kim, Eun-Ki;Kim, Jin-Hwan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.288-292
    • /
    • 2006
  • Through statistically designed experiments, lysis agents were optimized to effectively disrupt bacterial cells in a microfluidic device. Most surfactants caused the efficient lysis of Gram-positive microbes, but not of Gram-negative bacteria. A Plackett-Burman design was used to select the components that increase the efficiency of the lysis of the Gram-negative bacteria Escherichia coli. Using this experimental design, both lysozyme and benzalkonium chloride were shown to significantly increase the cell lysis efficiency, and ATP was extracted in proportion to the lysis efficiency. Benzalkonium chloride affected the cell membrane physically, while lysozyme destroyed the cell wall, and the amount of ATP extracted increased through the synergistic interaction of these two components. The two-factor response-surface design method was used to determine the optimum concentrations of lysozyme and benzalkonium chloride, which were found to be 202 and 99 ppm, respectively. The lysis effect was further verified by microscopic observations in the microchannels. These results indicate that Gram-negative cells can be lysed efficiently in a microfluidic device, thereby allowing the rapid detection of bacterial cells using a bioluminescence-based assay of the released ATP.