• Title/Summary/Keyword: Cell-ECM Interaction

Search Result 24, Processing Time 0.027 seconds

Cell Behavior of Human Papillomavirus-immortalized and Tumorigenic Human Oral Keratinocytes Does Not Depend on the Integrin Expression

  • Park, Kyung-Hee;Min, Byung-Moo
    • International Journal of Oral Biology
    • /
    • v.32 no.3
    • /
    • pp.93-101
    • /
    • 2007
  • Cell behavior of the transformed cells is known to affect by interaction with extracellular matrix (ECM) proteins and integrin. To investigate the alterations of both integrin expression and cell-matrix interaction during neoplastic conversion of human oral kerationcytes, we studied expression levels of integrin subunits by flow cytometry and cellular responses to the ECM proteins in normal human oral keratinocytes (NHOKs), HPV-immortalized HOK-16B line, and three oral cancer cell lines established from HOK-16B line, CTHOK-16B-BaP, CTHOK-16B-DMBA, and CTHOK-16B-Dexa lines. The expression levels of ${\alpha}\;and\;{\beta}$ integrin subunits were shown decreased tendency in human oral keratinocytes undergoing immortalization and tumorigenic transformation except CTHOK-16B-DMBA line tested. Although ${\alpha}v{\beta}6$ integrin is known to be highly expressed in squamous cell carcinomas, and the altered integrin expression is suspected to be associated with cellular carcinogenesis, ${\alpha}v$ integrin subunit and ${\alpha}v{\beta}6$ integrin did not express in oral cancer cell lines tested. Cell behavior to the ECM proteins in HOK-16B line was generally similar to that of exponentially proliferating NHOKs. The adhesion activity profiles of type I collagen were very similar to that of its laminin counterparts, but fibronectin showed minimal adhesion activity under our conditions compared to the BSA control. The ability of the CTHOK-16B-BaP line to spread upon type I collagen and laminin markedly decreased, but migration was notably increased on type I collagen. In contrast, CTHOK-16B-DMBA and CTHOK-16B-Dexa lines spread less but migrated more upon type I collagen than immortalized HOK-16B line. These data indicate that downregulation of integrin subunits causes the changes of cellular responses to the ECM proteins during neoplastic conversion of human oral keratinocytes, and that cellular responses to the ECM proteins in oral cancer cell lines established by exposing different carcinogens are variable according to chemical carcinogens treatment.

Sesquicillin, an Extracellular Matrix Adhesion Inhibitor, Inhibits the Invasion of B16 Melanoma Cells In vitro

  • Lee, Ho-Jae;Chun, Hyo-Kon;Chung, Myung-Chul;Lee, Choong-Hwan;Kho, Yung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.1
    • /
    • pp.119-121
    • /
    • 1999
  • Tumor cell interaction with the extracellular matrix is defined as the critical event of tumor invasion that signals the initiation of a metastatic cascade. Sesquicillin has been identified as an inhibitor of melanoma cell adhesion to the components of the extracellular matrix (ECM) in cultured broth of fungal strain F60063. Sesquicillin strongly inhibited the adhesion of B16 melanoma cells to laminin, fibronectin, and typeIV collagen. It also inhibited B16 melanoma cell invasion of reconstituted basement membrane Matrigel in vitro in a dose-dependent manner. These results suggest that sesquicillin is a new class of nonpeptidic ECM adhesion inhibitor having anti-invasive activity.

  • PDF

Inhibitory activity of plant extracts on Cell-ECM adhesion (암세포에 대한 식물 추출물의 세포외 기질 접착저해 활성)

  • Lee, Sang-Myung;Lee, Ho-Jae;Lee, Choong-Hwan;An, Ren Bo;Na, Min-Kyun;Bae, Ki-Hwan;Kho, Yung-Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.31 no.4
    • /
    • pp.394-400
    • /
    • 2000
  • Tumor cell interaction with the extracellular matrix (ECM) is defined as the critical event of tumor invasion that signals the initiation of a metastatic cascade. To search for anti-metastatic agent from plants, several plant extracts were screened by cell- ECM anti-adhesion test. As result, Boehmeria pannosa, Dryopteris crassirhizoma, Scilla scilloides, and Agrimonia pilosa were shown a significant anti-adhesion activity.

  • PDF

Certification of Gibroblase Cell Adhesion and Spreading Mediated by Arg-Gly-Asp (RGD) Sequence on Thermo-Reversible Hydrogel

  • NA, KUN;DONG-WOON KIM;KEUN-HONG PARK
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.922-927
    • /
    • 2001
  • In an effort to regulate the mammalian cell behavior in entrapment with a gel, we have functionalized hydrogels with the putative cell-binding (-Arg-Gly-Asp-)(RGD) domain. An adhesion molecule of Gly-Arg-Gly-Asp-Ser (GRGDS) peptides, a cell recognition ligand, was induced into thermo-reversible hydrogels, composed of N-isopropylacrylamide with small amounts of acrylic acid (typically 2-5 $mol\%$ in feed), as a biomimetic extracellular matrix (ECM). The GRGDS containing a p(NiPAAm-co-AAc) copolymer gel was studied in vitro for its ability to promote the spreading and viability of cells by introducing a GRGDS sequence. Hydrogel with no adhesion molecule was a poor ECM for adhesion, permiting spreading of only $3\%$ of the seeded cells for 36h. By immobilizing the peptide linkage into the hydrogel, the conjugation of RGD promoted $50\%$ of proliferation for 36h. However, the GREDS sequence, nonadhesive peptide linkage, conjugated hydrogel showed only $5\%$ of the seeded cell for the same time period. In addition, with the serum-free medium, only GRGDS peptides conjugated to hydrogel was able to promotecell spreading, while there was no cell proliferation in the hydrogel without GRGDS. Thus, the GRGDS peptide-conjugated thermo-reversible hydrogel specifically mediated the cell spreading. This result suggests that utilization of peptide sequences conjugating with the cell-adhesive motifs can enhance the degree of cell surface interaction and influence the long-term formation of ECM in vitro.

  • PDF

Physical and Chemical Effects of Extracellular Matrix on the Growth of Cardiomyocytes (HL-1) (세포외 기질 물질의 물리·화학적 영향에 따른 심근세포(HL-1)의 성장 연구)

  • Hong, Yoon-Mi;Choi, Seong-Kyun;Kim, Sun-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1229-1235
    • /
    • 2011
  • The extracellular matrix (ECM) is a key factor affecting cell growth and adhesion to the culture surface, and it is also important for maintaining the innate characteristics of cells. Here, we describe the effects of the ECM on cardiomyocyte (HL-1 cell line) growth, viability, phenotype, and contractile ability. Five different ECM materials were investigated to analyze their effects on the cell growth. The physical morphology of the ECM-coated surfaces was scanned with an atomic force microscope (AFM), and the attachment, growth, proliferation, viability, and phenotype of the cells were analyzed using fluorescence immunostaining and an inverted phase contrast microscope.

Fibronectin Induces Pro-MMP-2 Activation and Enhances Invasion in H-Ras-Transformed Human Breast Epithelial Cells

  • Kim, Jong-Sook;Moon, A-Ree
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.288-292
    • /
    • 2009
  • Interactions between tumor cells and the extracellular matrix (ECM) strongly influence tumor development, affecting cell survival, proliferation and migration. Fibronectin, a major component of ECM, has been shown to interact with integrins especially the ${\alpha}5{\beta}1$ integrin. Cell invasion and metastasis are often associated with matrix metalloproteinases (MMPs) which are capable of digesting the different components of the ECM and basement membrane. MMP-2 is produced as a latent pro-MMP-2 (72 kDa) to be activated, resulting the 62 kDa active MMP-2. In this study, we investigated the effect of fibronectin on activation of pro-MMP-2 and the cellular invasiveness in H-Ras-transformed MCF10A human breast epithelial cells. Here we show that fibronectin induces activation of pro-MMP-2 and up-regulation of MT1-MMP and TIMP-2 in H-Ras MCF10A cells. These results demonstrate that H-Ras MCF10A cells secrete high levels of active MMP-2 when cultured with fibronectin, suggesting a possible interaction between the ECM network and H-Ras MCF10A cells to generate active MMP-2 which is important for proteolysis and ECM remodeling. Invasive and migratory abilities of H-Ras MCF10A cells were enhanced by fibronectin. Fibronectin up-regulated the expression of ${\beta}1$ integrin which may play a role in cellular responses exerted by fibronectin. Since acquisition of pro-MMP-2 activation can be associated with increased malignant progression, this study provides a mechanism for the cell surface-matrix degrading effect of fibronectin which will be crucial to breast cell invasion and migration.

Hydrothermal Synthesis of $TiO_2$ Nanowire Array for Osteoblast Adhesion

  • Yun, Young-Sik;Kang, Eun-Hye;Hong, Min-Eui;Yun, In-Sik;Kim, Yong-Oock;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.275-275
    • /
    • 2013
  • Osteoblast is one of cells related with osseointegration and many research have conducted the adhesion of osteoblast onto the surface of implant. In the osseointegration, biocompatibility of the implant and cell adhesion to the surface are important factors. The researches related to cell adhesion have a direction from micro-scaled surface roughness to nano-scaled surface roughness with advancing nanotechnology. A cell reacts and sense to stimuli from extracellular matrix (ECM) and topography of the ECM [1]. Thus, for better osseointegration, we should provide an environment similar to ECM. In this study, we synthesize TiO2 nanowires using hydrothermal reaction because TiO2 provides inertness to titanium on its surface and enables it used as an implant material for the orthopedic treatment such as fixation of the bone fracture [2]. Ti substrate is immersed into NaOH aqueous solution. The solution are heated at $140{\sim}200^{\circ}C$ for various time (10~720 minutes). After heat treatment, we take out the sample and immerse it into HCl aqueous solution for 1 hour. The acid treated sample is heated again at $500^{\circ}C$ for 3 hours [3]. Then, we culture osteoblast on the TiO2 nanowires. For investigating cell adhesion onto nanostructured surface, we conduct several tests such as MTT assay, ALP (Alkaline phosphatase) activity assay, measuring calcium expression, and so on. These preliminary results of the cell culture on the nanowires are foundation for investigating cell-material interaction especially with nanostructure interaction.

  • PDF

Anti-Oxidant and Anti-Aging Effect of Supercritical Fluid Extraction of Seed of Euphorbia lathyris L. as a Pharmacopuncture Material (한방약침소재로써 속수자 초임계추출물의 항산화 및 항노화에 대한 연구)

  • Kwak, Byeong Mun;Kim, Tae-Jun;Kim, Ee-Hwa
    • Korean Journal of Acupuncture
    • /
    • v.37 no.2
    • /
    • pp.88-96
    • /
    • 2020
  • Objectives : The purpose of this study was to investigate the anti-oxidant and anti-aging effect of the seed of Euphorbia lathyris L. extracted by supercritical CO2. Methods : Human dermal fibroblast cells dosed with the extract from Euphorbia lathyris L. were harvested and the intracellular proteome was analyzed to examine the expression of proteins related collagen synthesis pathway, metalloproteinases (MMPs), extracellular matrix (ECM)-cell interaction, cytokines, and antioxidant enzymes by 2-dimensional gel electrophoresis. Results : Fatty acid analysis of the extract from Euphorbia lathyris L. showed oleic acid was 84% and linoleic acid was 4.1%. Antioxidative effect was about 53% by beta carotene bleaching assay. In 2-dimensional polyacrylamide gel electrophoresis (2-D PAGE) analysis, fifteen protein changes in five mechanisms which were collagen synthesis pathway, MMPs, ECM-cell interaction, cytokines, and antioxidant enzymes were analyzed. Conclusions : This study suggests the supercritical extraction from the seed of Euphorbia lathyris L. could be used as anti-oxidant substances for pharmacopuncture.

Far-infrared radiation stimulates platelet-derived growth factor mediated skeletal muscle cell migration through extracellular matrix-integrin signaling

  • Lee, Donghee;Seo, Yelim;Kim, Young-Won;Kim, Seongtae;Bae, Hyemi;Choi, Jeongyoon;Lim, Inja;Bang, Hyoweon;Kim, Jung-Ha;Ko, Jae-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.141-150
    • /
    • 2019
  • Despite increased evidence of bio-activity following far-infrared (FIR) radiation, susceptibility of cell signaling to FIR radiation-induced homeostasis is poorly understood. To observe the effects of FIR radiation, FIR-radiated materials-coated fabric was put on experimental rats or applied to L6 cells, and microarray analysis, quantitative real-time polymerase chain reaction, and wound healing assays were performed. Microarray analysis revealed that messenger RNA expressions of rat muscle were stimulated by FIR radiation in a dose-dependent manner in amount of 10% and 30% materials-coated. In 30% group, 1,473 differentially expressed genes were identified (fold change [FC] > 1.5), and 218 genes were significantly regulated (FC > 1.5 and p < 0.05). Microarray analysis showed that extracellular matrix (ECM)-receptor interaction, focal adhesion, and cell migration-related pathways were significantly stimulated in rat muscle. ECM and platelet-derived growth factor (PDGF)-mediated cell migration-related genes were increased. And, results showed that the relative gene expression of actin beta was increased. FIR radiation also stimulated actin subunit and actin-related genes. We observed that wound healing was certainly promoted by FIR radiation over 48 h in L6 cells. Therefore, we suggest that FIR radiation can penetrate the body and stimulate PDGF-mediated cell migration through ECM-integrin signaling in rats.

Effects od Segree of Cell-Cell Contact on Liver Specific Function of Rat Primary Hepatocytes

  • Tang, Sung-Mun;Lee, Doo-Hoon;Park, Jung-Keug
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.2
    • /
    • pp.99-105
    • /
    • 2000
  • Cell-Cell interaction and the extracellular matrix (ECM) are belisved to play essential roles during in vitro culturing of primary hepatocytes in the control of differentiation and in the maintenance of tissue spcific functions. The objective of this study was to examine the effects of degree of cell-cell contact (DCC) on liver sperific function of rat promary hepatocytes. Hepatocyte aggregates with various with various degrees of cell-cell contantact, I. e., dispersed cell, longish aggregate, rugged aggregate, and smooth spheroid were obtained at 1, 5-6, 15-20, and 36-48 hrs, respectively in suspension cultures grown in spinner flasks embedded in Caalginate bead and collagen gel in order. The may result from mass transfer limitation and shear damage caused by agitation during aggregation. The rugged aggregate showed a higer viability and albumin secretion rate than the dispersed cells or the other aggregates. This result indicates the possible enhancement of a bioartificial liver's (BAL) performance using primary hepatocytes and the reduction in time to prepare a BAL through optimization of the immobilization time.

  • PDF