• Title/Summary/Keyword: Cell trafficking

Search Result 75, Processing Time 0.028 seconds

PKD2 interacts with Lck and regulates NFAT activity in T cells

  • Li, Qing;Sun, Xiaoqing;Wu, Jun;Lin, Zhixin;Luo, Ying
    • BMB Reports
    • /
    • v.42 no.1
    • /
    • pp.35-40
    • /
    • 2009
  • Protein kinase D2 (PKD2) is a member of the PKD serine/threonine protein kinase family that has been implicated in the regulation of a variety of cellular processes including proliferation, survival, protein trafficking and immune response. In the present study, we report a novel interaction between PKD2 and Lck, a member of the Src tyrosine protein kinase family that is predominantly expressed in T cells. This interaction involved the C-terminal kinase domains of both PKD2 and Lck. Moreover, co-expression of Lck enhanced the tyrosine phosphorylation of PKD2 and increased its kinase activity. Finally, we report that PKD2 enhanced T cell receptor (TCR)-induced nuclear factor of T cell (NFAT) activity in Jurkat T cells. These results suggested that Lck regulated the activity of PKD2 by tyrosine phosphorylation, which in turn may have modulated the physiological functions of PKD2 during TCR-induced T cell activation.

Agonist (P1) Antibody Converts Stem Cells into Migrating Beta-Like Cells in Pancreatic Islets

  • Eun Ji Lee;Seung-Ho Baek;Chi Hun Song;Yong Hwan Choi;Kyung Ho Han
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1615-1621
    • /
    • 2022
  • Tissue regeneration is the ultimate treatment for many degenerative diseases, however, repair and regeneration of damaged organs or tissues remains a challenge. Previously, we showed that B1 Ab and H3 Ab induce stem cells to differentiate into microglia and brown adipocyte-like cells, while trafficking to the brain and heart, respectively. Here, we present data showing that another selected agonist antibody, P1 antibody, induces the migration of cells to the pancreatic islets and differentiates human stem cells into beta-like cells. Interestingly, our results suggest the purified P1 Ab induces beta-like cells from fresh, human CD34+ hematopoietic stem cells and mouse bone marrow. In addition, stem cells with P1 Ab bound to expressed periostin (POSTN), an extracellular matrix protein that regulates tissue remodeling, selectively migrate to mouse pancreatic islets. Thus, these results confirm that our in vivo selection system can be used to identify antibodies from our library which are capable of inducing stem cell differentiation and cell migration to select tissues for the purpose of regenerating and remodeling damaged organ systems.

Cellular Flavonoid Transport Mechanisms in Animal and Plant Cells (플라보노이드 세포 수송 기전)

  • Han, Yoo-Li;Lee, So-Young;Lee, Ji Hae;Lee, Sung-Joon
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.137-141
    • /
    • 2013
  • Flavonoids have various biological activities; however, their cellular uptake mechanism is beginning to be understood only recently. This review focuses on cellular flavonoids transport mechanisms in both plants and animals. In plants, flavonoids exist in various cellular compartments, providing a specialized transport system. Newly synthesized flavonoids can be transported from the endoplasmic reticulum to the vacuoles or extracellular space via cellular trafficking pathway. Among membrane transporters, ATP binding cassette, multidrug and toxic extrusion, bilitranslocase homologue transporters play roles in both the influx and efflux of cellular flavonoids across the cell membrane. In recent years, extensive researches have provided a better understanding on the cellular flavonoid transport in mammalian cells. Bilitranslocase transports flavonoids in various tissues, including the liver, intestine and kidneys. However, other transport mechanisms are largely unknown and thus, further investigation should provide detailed mechanisms, which can potentially lead to an improved bioavailability and cellular function of flavonoids in humans.

Mechanosensitive Modulation of Receptor-Mediated Crossbridge Activation and Cytoskeletal Organization in Airway Smooth Muscle

  • Hai, Chi-Ming
    • Archives of Pharmacal Research
    • /
    • v.23 no.6
    • /
    • pp.535-547
    • /
    • 2000
  • Recent findings indicate that mechanical strain (deformation) exerted by the extracellular matrix modulates activation of airway smooth muscle cells. Furthermore, cytoskeletal organization in airway smooth muscle appears to be dynamic, and subject to modulation by receptor activation and mechanical strain. Mechanosensitive modulation of crossbridge activation and cytoskeletal organization may represent intracellular feedback mechanisms that limit the shortening of airway smooth muscle during bronchoconstriction. Recent findings suggest that receptor-mediated signal transduction is the primary target of mechanosensitive modulation. Mechanical strain appears to regulate the number of functional G-proteins and/or phospholipase C enzymes in the cell membrane possibly by membrane trafficking and/or protein translocation. Dense plaques, membrane structures analogous to focal adhesions, appear to be the primary target of cytoskeletal regulation. Mechanical strain and receptor-binding appear to regulate the assembly and phosphorylation of dense plaque proteins in airway smooth muscle cells. Understanding these mechanisms may reveal new pharmacological targets for control1ing airway resistance in airway diseases.

  • PDF

Radionuclide Reporter Gene Imaging (핵의학적 리포터 유전자 영상)

  • Min, Jung-Joon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.143-151
    • /
    • 2004
  • Recent progress in the development of non-invasive imaging technologies continues to strengthen the role of molecular imaging biological research. These tools have been validated recently in variety of research models, and have been shown to provide continuous quantitative monitoring of the location(s), magnitude, and time-variation of gene expression. This article reviews the principles, characteristics, categories and the use of radionuclide reporter gene imaging technologies as they have been used in imaging cell trafficking, imaging gene therapy, imaging endogenous gene expression and imaging molecular interactions. The studios published to date demonstrate that reporter gene imaging technologies will help to accelerate pre-clinical model validation as well as allow for clinical monitoring of human diseases.

Translational Imaging with PET Reporter Gene Approaches (PET 리포터 유전자를 이용한 이행성 연구)

  • Min, Jung-Joon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.6
    • /
    • pp.279-292
    • /
    • 2006
  • Recent progress in the development of non-invasive imaging technologies continues to strengthen the role of biomedical research. These tools have been validated recently in variety of research models, and have born shown to provide continuous quantitative monitoring of the location(s), magnitude, and time-variation of gene delivery and/or expression. This article reviews the use of PET technologies as they have been used in imaging biological processes for molecular imaging applications. The studies published to date demonstrate that noninvasive imaging tools will help to accelerate pre-clinical model validation as well as allow for clinical monitoring of human diseases.

Protein Kinase D1, a New Molecular Player in VEGF Signaling and Angiogenesis

  • Ha, Chang Hoon;Jin, Zheng Gen
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • Vascular endothelial growth factor (VEGF) is essential for many angiogenic processes both in normal and pathological conditions. However, the signaling pathways involved in VEGF-induced angiogenesis are incompletely understood. The protein kinase D1 (PKD1), a newly described calcium/calmodulin-dependent serine/threonine kinase, has been implicated in cell migration, proliferation and membrane trafficking. Increasing evidence suggests critical roles for PKD1-mediated signaling pathways in endothelial cells, particularly in the regulation of VEGF-induced angiogenesis. Recent studies show that class IIa histone deacetylases (HDACs) are PKD1 substrates and VEGF signal-responsive repressors of myocyte enhancer factor-2 (MEF2) transcriptional activation in endothelial cells. This review provides a guide to PKD1 signaling pathways and the direct downstream targets of PKD1 in VEGF signaling, and suggests important functions of PKD1 in angiogenesis.

Variants of LYST and Novel STK4 Gene Mutation in a Child With Accelerated Chediak Higashi Syndrome

  • Asrar Abu Bakar;Haema Shunmugarajoo;Jeyaseelan P. Nachiappan;Intan Hakimah Ismail
    • Pediatric Infection and Vaccine
    • /
    • v.31 no.1
    • /
    • pp.122-129
    • /
    • 2024
  • Chediak-Higashi syndrome (CHS) is a rare haematological and immunodeficiency disorder that occurs in childhood leading to recurrent infections, bleeding tendencies and progressive neurological dysfunction. Partial oculocutaneous albinism occurs in almost all cases. The exact prevalence is unknown, and the disease is caused by over 70 identified mutations in the lysosomal trafficking regulator gene. The presence of a bright polychromatic appearance from hair shaft and abnormally large intracytoplasmic granules, especially within neutrophils and platelets in the bone marrow is highly suggestive. Treatment is largely supportive, and the only curative treatment is through an allogeneic hematopoietic stem cell transplant. Without transplant, most patients will enter an accelerated phase of hemophagocytic lymphohistiocytosis (HLH) which carries a high mortality rate. We present a young male with CHS who we had followed through and eventually developed a fulminant accelerated phase. We believe this is only the second reported case of CHS in Malaysia.

Uptake of Fibroin Microspheres by 3T3 Cells (3T3 세포에 의한 피브로인 마이크로스피어의 흡수)

  • Lee, Jin Sil;Go, Nam Kyung;Lee, Shin Young;Hur, Won
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.328-335
    • /
    • 2014
  • Vehicle toxicity is one of the main obstacles for intracellular delivery of bioactive compounds. Silk fibroin is a natural polymer proven to have high biocompatibility since being used as suture material. In this report, fibroin microspheres were prepared without any chemical modification or cross-linking not to affect its biocompatibility. The microspheres were taken up by more than 90% of 3T3 cells. Cellular uptake continued after medium replenishment with a different-colored fluorescent microsphere, suggesting that simultaneous ingestion and exocytosis occurred. Cellular uptake of fibroin microspheres did not affect cell viability. Intracellular trafficking of the microspheres using lysosome-specific fluorescent dye revealed that fibroin microspheres were localized both in the cytoplasm and in the lysosome. Accordingly, fibroin microspheres can be a potential vehicle for intracytoplasmic delivery of large cargos, such as mixtures of proteins, nutrients or artificial organelles.

The Plant Cellular Systems for Plant Virus Movement

  • Hong, Jin-Sung;Ju, Ho-Jong
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.213-228
    • /
    • 2017
  • Plasmodesmata (PDs) are specialized intercellular channels that facilitate the exchange of various molecules, including sugars, ribonucleoprotein complexes, transcription factors, and mRNA. Their diameters, estimated to be 2.5 nm in the neck region, are too small to transfer viruses or viral genomes. Tobacco mosaic virus and Potexviruses are the most extensively studied viruses. In viruses, the movement protein (MP) is responsible for the PD gating that allows the intercellular movement of viral genomes. Various host factors interact with MP to regulate complicated mechanisms related to PD gating. Virus replication and assembly occur in viral replication complex (VRC) with membrane association, especially in the endoplasmic reticulum. VRC have a highly organized structure and are highly regulated by interactions among the various host factors, proteins encoded by the viral genome, and the viral genome. Virus trafficking requires host machineries, such as the cytoskeleton and the secretory systems. MP facilitates the virus replication and movement process. Despite the current level of understanding of virus movement, there are still many unknown and complex interactions between virus replication and virus movement. While numerous studies have been conducted to understand plant viruses with regards to cell-to-cell movement and replication, there are still many knowledge gaps. To study these interactions, adequate research tools must be used such as molecular, and biochemical techniques. Without such tools, virologists will not be able to gain an accurate or detailed understanding of the virus infection process.