• Title/Summary/Keyword: Cell throughput

Search Result 503, Processing Time 0.026 seconds

Prospects for Plant Biotechnology and Bioindustry in the 21s1 Century: Paradigm Shift Driven by Genomics (21세기 식물생명공학과 생물산업의 전망 : 유전체 연구에 의한 Paradigm Shift)

  • Liu, Jang-Ryol;Choi, Dong-Woog;Chung, Hwa-Jee
    • Journal of Plant Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.145-150
    • /
    • 2002
  • Biotechnology in the 21st century will be driven by three emerging technologies: genomics, high-throughput biology, and bioinformatics. These technologies are complementary to one another. A large number of economically important crops are currently subjected to whole genome sequencing. Functional genomics for determining the functions of the genes comprising the given plant genome is under progress by using various means including phenotyping data from transgenic mutants, gene expression profiling data from DNA microarrays, and metabolic profiling data from LC/mass analysis. The aim of plant molecular breeding is shifting from introducing agronomic traits such as herbicide and insect resistance to introducing quality traits such as healthful oils and proteins, which will lead to improved and nutritional food and feed products. Plant molecular breeding is also expected to aim to develop crops for producing human therapeutic and industrial proteins.

Performance Analysis of S-SFR-based OFDMA Cellular Systems

  • Kim, Yi-Kang;Cho, Choong-Ho;Yoon, Seok-Ho;Kim, Seung-Yeon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.186-205
    • /
    • 2019
  • Intercell interference coordination (ICIC) is considered as a promising technique to increase the spectral efficiency of OFDMA cellular systems. The soft frequency reuse (SFR) and fractional frequency reuse (FFR) are representative and efficient management techniques for ICIC. Herein, to enhance the performance of the SFR scheme, we propose a call admission (CAC) scheme. In this CAC scheme, called Spectrum handoff-SFR(S-SFR), the spectrum handoff technique is applied to the user equipment (UE) located near the cell center. We derive the traffic analysis model to describe the S-SFR. In addition, a two-dimensional (2-D) Markov chain and an outage analysis are used in our analytical model. From the traffic analysis, the significant performance measures are the outage probability, call blocking probability, system throughput and resource utilization. Based on those, the outage probability and system throughput are obtained using resource utilization as an interference pattern. The analytical results are verified with computer simulation results. Finally, we compare our proposed scheme with other ICI schemes.

Discovery to Human Disease Research: Proteo-Metabolomics Analysis

  • Minjoong Joo;Jeong-Hun Mok;Van-An Duong;Jong-Moon Park;Hookeun Lee
    • Mass Spectrometry Letters
    • /
    • v.15 no.2
    • /
    • pp.69 -78
    • /
    • 2024
  • The advancement of high-throughput omics technologies and systems biology is essential for understanding complex biological mechanisms and diseases. The integration of proteomics and metabolomics provides comprehensive insights into cellular functions and disease pathology, driven by developments in mass spectrometry (MS) technologies, including electrospray ionization (ESI). These advancements are crucial for interpreting biological systems effectively. However, integrating these technologies poses challenges. Compared to genomic, proteomics and metabolomics have limitations in throughput, and data integration. This review examines developments in MS equipped electrospray ionization (ESI), and their importance in the effective interpretation of biological mechanisms. The review also discusses developments in sample preparation, such as Simultaneous Metabolite, Protein, Lipid Extraction (SIMPLEX), analytical techniques, and data analysis, highlighting the application of these technologies in the study of cancer or Huntington's disease, underscoring the potential for personalized medicine and diagnostic accuracy. Efforts by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and integrative data analysis methods such as O2PLS and OnPLS extract statistical similarities between metabolomic and proteomic data. System modeling techniques that mathematically explain and predict system responses are also covered. This practical application also shows significant improvements in cancer research, diagnostic accuracy and therapeutic targeting for diseases like pancreatic ductal adenocarcinoma, non-small cell lung cancer, and Huntington's disease. These approaches enable researchers to develop standardized protocols, and interoperable software and databases, expanding multi-omics research application in clinical practice.

Proposal and Evaluation of Ultra High Speed Wireless Cell Backbone Networks (도시형 초고속 무선통신 셀백본망의 제안 및 평가)

  • Shin, Cheon-Woo;Park, Sung-Hyun
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.243-248
    • /
    • 2003
  • This paper is contents on that construct ultra high speed wireless communication cell backbone net of city using of wireless communication transceiver for millimeter wave band. A new type of 60GHz wave band wireless transceiver using NRD waveguide. This 60GHz transceiver has excellent signal's absorption characteristics of oxygen molecule than the other millimeter wave bands. We constructed service networks to cell interval within about 500m to 3Km laying stress on wireless backbone node using 60GHz transceivers, and did it so that city type wireless communication cell backbone networks of 155.52Mbps ATM(OC-3) may be possible. The possible use of wireless backbone networks technology in a rainy day and a clear day was evaluated at 1Km data link distance. We can measured bit error rate(BER). BER is $10^{-11}$ at 155.52Mbps ATM(OC-3) in a clear day and $10^{-6}$ in a heavy rain more than 35mm per time. Also, we constructed wireless cell backbone networks distance to use several 60GHz transceivers and investigated data transmission rate between main center and local center of long distance. In proposed wireless cell backbone networks, the data throughput was approximately 80Mbit/sec. Therefore, if use transceiver, it is possible that city type ultra high speed wireless communication cell backbone networks construction of 100Mbps, 155.52Mbps, 622Mbps, 1Gbps and 1.2Gbps degrees.

  • PDF

An Effective Cell Scheduling Algorithm for Input Queueing ATM Switch (입력단 큐잉 방식의 ATM 스위치를 위한 효율적 셀 중재 방식에 관한 연구)

  • 김용웅;원상연;박영근
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1A
    • /
    • pp.122-131
    • /
    • 2000
  • In this paper, we propose a cell scheduling algorithm for input queueing ATM switch. The input queueing architecture is attractive for building an ultra-high speed ATM (Asynchronous Transfer Mode) switch. We proposea WMUCS (Weighted Matrix Unit Cell Scheduler) based on the MUCS which resolves HOL blocking and outputport contention. The MUCS algorithm selects an optimal set of entries as winning cells from traffic matrix (weightmatrix). Our WMUCS differs from the MUCS in generating weight matrices. This change solves the starvationproblem and it reduces the cell loss variance. The performance of the proposed algorithm is evaluated by thesimulation program written in C++. The simulation results show that the maximum throughput, the average celldelay, and the cell loss rate are significantly improved. We can see that the performance of WMUCS is excellentand the cost-effective implementation of the ATM switch using proposed cell scheduling algorithm.

  • PDF

WRR Cell Scheduling Algorithm of BSW structure (BSW구조의 셀 스케쥴링 알고리즘)

  • 조해성;임청규;전병실
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.3
    • /
    • pp.119-125
    • /
    • 2000
  • A network of Asynchronous Transfer Mode (ATM) will be required to carry the traffics(CVR, VBR, UBR, ABR) generated by a wide range of services. The algorithm of WRR cell multiplexing is designed to serve no only CBR, VBR traffic but also ABR, UBR traffic in ATM. BSW algorithm was Proposed to carry on manage buffer efficiently at implementing of WRR scheduler. But, BSW a1gorithm cause serious degradation to the weight of each VC and the ratio of scheduler throughput because it allocates more weight than the weight allocated actually in VC and because it could not serve cell if the VC queue is empty. In this paper, we propose the WRR scheduling algorithm of BSW structure which improves the cell service ratio and cell delay. The proposed algorithm is capable of maintaining an allocated VC's weight correctly and decrease of average cell delay by serving other VC cell when empty in each VC queue and increase of cell service ratio as a whole.

  • PDF

Automated Bacterial Cell Counting Method in a Droplet Using ImageJ (이미지 분석 프로그램을 이용한 액적 내 세포 계수 방법)

  • Jingyeong Kim;Jae Seong Kim;Chang-Soo Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.247-257
    • /
    • 2023
  • Precise counting of cell number stands in important position within clinical and research laboratories. Conventional methods such as hemocytometer, migration/invasion assay, or automated cell counters have limited in analytical time, cost, and accuracy., which needs an alternative way with time-efficient in-situ approach to broaden the application avenue. Here, we present simple coding-based cell counting method using image analysis tool, freely available image software (ImageJ). Firstly, we encapsulated RFP-expressing bacteria in a droplet using microfluidic device and automatically performed fluorescence image-based analysis for the quantification of cell numbers. Also, time-lapse images were captured for tracking the change of cell numbers in a droplet containing different concentrations of antibiotics. This study confirms that our approach is approximately 15 times faster and provides more accurate number of cells in a droplet than the external analysis program method. We envision that it can be used to the development of high-throughput image-based cell counting analysis.

Performance Evaluation of Scheduling Algorithm for VoIP under Data Traffic in LTE Networks (데이터 트래픽 중심의 LTE망에서 VoIP를 위한 스케줄링 알고리즘 성능 분석)

  • Kim, Sung-Ju;Lee, Jae Yong;Kim, Byung Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.20-29
    • /
    • 2014
  • Recently, LTE is preparing to make a new leap forward LTE-A all over the world. As LTE privides high speed service, the role of mobile phones seems to change from voice to data service. According to Cisco, global mobile data traffic will increase nearly 11-fold between 2013 and 2018. Mobile video traffic will reach 75% by 2018 from 66% in 2013 in Korea. However, voice service is still the most important role of mobile phones. Thus, controllability of throughput and low BLER is indispensable for high-quality VoIP service among various type of traffic. Although the maximum AMR-WB, 23.85 Kbps is sufficient to a VoIP call, it is difficult for the LTE which can provide tens to hundreds of MB/s may not keep the certain level VoIP QoS especially in the cell-edge area. This paper proposes a new scheduling algorithm in order to improve VoIP performance after analyzing various scheduling algorithms. The proposal is the technology which applies more priority processing for VoIP than other applications in cell-edge area based on two-tier scheduling algorithm. The simulation result shows the improvement of VoIP performance in the view point of throughput and BLER.

Proteomic Analysis of O-GlcNAc Modifications Derived from Streptozotocin and Glucosamine Induced β-cell Apoptosis

  • Park, Jung-Eun;Kwon, Hye-Jin;Kang, Yup;Kim, Young-Soo
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.1058-1068
    • /
    • 2007
  • The post-translational modifications of Ser and Thr residues by O-linked $\beta$-N-acetylglucosamine (O-GlcNAc), i.e., O-GlcNAcylation, is considered a key means of regulating signaling, in a manner analogous to protein phosphorylation. Furthermore, it has been suggested that the increased flux of glucose through the hexosamine biosynthetic pathway (HBP) stimulates O-GlcNAcylation, and that this may be responsible for many of the manifestations of type 2 diabetes mellitus. To determine whether excessive O-GlcNAcylation of target proteins results in pancreatic $\beta$ cell dysfunction, we increased nucleocytoplasmic protein O-GlcNAcylation levels in $\beta$ cells by exposing them to streptozotocin and/or glucosamine. Streptozotocin and glucosamine co-treatment increased O-GlcNAcylated proteomic patterns as assessed by immunoblotting, and these increases in nuclear and cytoplasmic protein O-GlcNAcylations were accompanied by impaired insulin secretion and enhanced apoptosis in pancreatic $\beta$ cells. This observed $\beta$cell dysfunction prompted us to examine Akt and Bcl-2 family member proteins to determine which proteins are O-GlcNAcylated under conditions of high HBP throughput, and how these proteins are associated with $\beta$ cell apoptosis. Eventually, we identified ten new O-GlcNAcylated proteins that were expressed during $\beta$ cell apoptosis, and analyzed the functional implications of these proteins in relation to pancreatic $\beta$ cell dysfunction.

A buffer management scheme of GFR Service for fairness improvement of TCP/IP traffic (TCP/IP 트래픽의 공평성 향상을 위한 GFR 서비스의 버퍼관리 기법)

  • Kwak, Hyun-Min;Kim, Nam-Hee;Lee, Sang-Tae;Chon, Byong-Sil
    • The KIPS Transactions:PartC
    • /
    • v.10C no.5
    • /
    • pp.595-602
    • /
    • 2003
  • In this paper, we proposed new buffer management and cell scheduling scheme of GFR service for improving fairness of TCP/IP traffic in ATM networks. The proposed algorithm used untagged cell, which came to ATM switch, to decide the policy for discard of frame and what kind of VC cell it would serve. Performance analysis through the simulation present that proposed scheme can meet fairness 2 (MCR Plus equal share), which are not met by conventional scheduling mechanism such as WRR. Also, proposed scheme is superior to WRR about 30% in throughput and more efficiency in fairness criteria.