• Title/Summary/Keyword: Cell temperature

Search Result 4,481, Processing Time 0.032 seconds

The Characteristic of Crystalline Si Solar Cell by Heat Shocking (Heat Shocking에 의한 결정질 실리콘 Solar Cell의 출력특성)

  • Shin, Jun-Oh;Jung, Tae-Hee;Kim, Tae-Bum;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.246-250
    • /
    • 2009
  • String & tabbing step in the crystalline PV module manufacturing process for the temperature directly affects solar cells. In fact, in the manufacture of PV modules tend to be temperature factor and the corresponding changes n the output shows the same characteristics. In this journal, it will be considered about thermal characteristics, especially changes of characteristic in high temperature of the solar cell through experiment that we measure electric output characteristics of solar cells after those are applied with high temperature changes for two seconds. And we can think about the possibility of efficiency improvements over looks in PV module manufacturing processes.

  • PDF

A Study on the Development of Induction Heating Mass Production System for Moisture Removal of Secondary Battery (이차전지 수분 제거용 유도가열 양산 시스템 개발에 관한 연구)

  • Wangeun Ji;Sunghwan Kim;Haiyoung Jung;Seok-Hyun Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.42-48
    • /
    • 2023
  • Abstract: In this study, an induction heating system using resonance is developed to remove remaining moisture and contaminations which could be generated during fabricating secondary batteries. This system is composed of power supply and induction coil. Power supply needs an oscillator, zero crossing detection, frequency tracking function, and induction coil needs a dummy coil to obtain a uniform temperature distribution. It is very important to obtain a uniform heating temperature distribution of battery cell case in the induction heating system before pouring electrolyte into battery cell. Experimental results show a temperature distribution deviation of below 1℃ in the external position of battery cell cases. As well, the temperature of battery cell itself shows distribution of 40℃±3℃.

A Study on the Relationship Between Photovoltaic Module Surface Temperature and Photovoltaic Power Using Real Experiment (실물 실험을 통한 태양광 모듈의 표면온도와 태양광 발전량과의 관계에 대한 연구)

  • Cho, Sung-Woo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.3
    • /
    • pp.8-14
    • /
    • 2018
  • PV module power is calculated on PV module surface temperature adjustment by irradiation on the summer and autumn in NOCT(Nominal Operating Cell Temperature) conditions. The summer and autumn periods were selected because of large variation in outdoor air temperature and irradiation. This study was performed to understand relationship between PV module surface temperature and photovoltaic power using field measurement. As a results, it was determined that the amount of irradiation was proportional to the amount of photovoltaic power in the field measurement. However, it was also identified that the PV power generation decreased by increased PV module surface temperatures due to irradiation.

Output Power Characteristics According to Temperature for Photovoltaic Systems (태양광 발전시스템의 온도에 따른 출력전력 특성)

  • Park, Chul-Woong;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.186-188
    • /
    • 2009
  • In this thesis, output voltage, current and power of solar module were classified by irradiation and module temperature from data of overall operating characteristics collected for one year in order to manage efficient photovoltaic generation system and deliver maximum power. In addition, from these data, correlations between irradiation, module temperature of photovoltaic cell and amount of power given by photovoltaic cell was quantitatively examined to deduce optimization of the design and construction of photovoltaic generation system. The results of this thesis can be summarized as follows. As output power characteristics according to a temperature range of 10$\sim$50[], output power was increased with an increase in temperature. Since output power increases with temperature increase, the result corresponds well to the related equation on temperature and output power.

  • PDF

A Study on the Temperature Distribution Characteristics of NAS Battery Module (NAS 전지 모듈의 온도 분포 특성에 관한 연구)

  • Heo, Doo-Sang;Yi, Chung-Seob;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.1-6
    • /
    • 2012
  • This paper addresses the issue of Renewable Energy for Electricity Storage device is one of the NAS (Sodium-Sulfur) battery will be about the module. For safety reasons, not the actual battery cells using a dummy cell in the module's operating temperature setting to examine the characteristics of the insulation vacuum of the wall temperature and external temperature changes measured over time. Upper and lower boundaries of the wall vacuum insulation characteristics cotton C intervals over time, average $5^{\circ}C$, but the temperature is rising, 4C section with little temperature change did not occur. On the other hand, about $3^{\circ}C$ in section 4D, and it was confirmed that the temperature rises. Wall vacuum insulation characteristics over time to look at the experiments and measurements are described.

Design of Cell Frame Structure of Unit Cell for Molten Carbonate Fuel Cell Using CFD Analysis (CFD를 통한 용융탄산염 연료전지 단위전지용 셀 프레임 구조 설계)

  • LEE, SUNG-JOO;LIM, CHI-YOUNG;LEE, CHANG-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.56-63
    • /
    • 2018
  • In this study, a $100cm^2$ cell frame for a molten carbonate fuel cell was designed using CFD analysis. Electrochemical reactions, gas flow, and the heat transfer in $100cm^2$ cell frame were modeled using COMSOL Multiphysics. Two design variables such as the height of the cell frame and the length of the gas input area were determined to obtain minimized temperature distribution and uniform gas distribution. With two design parameter such as height of the cell frame and the length of the gas flow channel, the temperature difference in the cell fame was decreased to $5^{\circ}C$ and the gas uniformity in the flow channel were achieved.

A Study on deformation and electrical efficiency of PV cell according to hot-air temperature at soldering process (솔더링 공정에서 열풍온도에 따른 PV셀의 변형량 및 전기효율에 관한 연구)

  • Lee, Jong-Hwan;Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4065-4071
    • /
    • 2014
  • The analysis results of the temperature distribution and deformation at the PV cell with a thickness of $200{\mu}m$ according to hot-air temperature at the soldering process of a PV cell and ribbon tend to agree somewhat with the experimental measured values. The best result of the electrical efficiency appears in the module soldered at a hot-air temperature of $390^{\circ}C$. An analysis of the soldering PV cell with a thickness of $150{\mu}m$ at a hot-air temperature of $350^{\circ}C$ confirmed that the maximum deformation was approximately 5.9mm. As the temperature of hot air is set to decrease, the deformation is reduced and it is predicted that the electrical efficiency can be improved.

Comparative investigation of endurance and bias temperature instability characteristics in metal-Al2O3-nitride-oxide-semiconductor (MANOS) and semiconductor-oxide-nitride-oxide-semiconductor (SONOS) charge trap flash memory

  • Kim, Dae Hwan;Park, Sungwook;Seo, Yujeong;Kim, Tae Geun;Kim, Dong Myong;Cho, Il Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.449-457
    • /
    • 2012
  • The program/erase (P/E) cyclic endurances including bias temperature instability (BTI) behaviors of Metal-$Al_2O_3$-Nitride-Oxide-Semiconductor (MANOS) memories are investigated in comparison with those of Semiconductor-Oxide-Nitride-Oxide-Semiconductor (SONOS) memories. In terms of BTI behaviors, the SONOS power-law exponent n is ~0.3 independent of the P/E cycle and the temperature in the case of programmed cell, and 0.36~0.66 sensitive to the temperature in case of erased cell. Physical mechanisms are observed with thermally activated $h^*$ diffusion-induced Si/$SiO_2$ interface trap ($N_{IT}$) curing and Poole-Frenkel emission of holes trapped in border trap in the bottom oxide ($N_{OT}$). In terms of the BTI behavior in MANOS memory cells, the power-law exponent is n=0.4~0.9 in the programmed cell and n=0.65~1.2 in the erased cell, which means that the power law is strong function of the number of P/E cycles, not of the temperature. Related mechanism is can be explained by the competition between the cycle-induced degradation of P/E efficiency and the temperature-controlled $h^*$ diffusion followed by $N_{IT}$ passivation.

Effect of Water Temperature, Rearing Density, Salinity, and Food Organisms on The Growth and Survival Rate in Early Juvenile Hard Shelled Mussel, Mytilus coruscus (수온, 사육밀도, 염분 및 먹이생물에 따른 참담치(Mytilus coruscus) 초기 부착치패의 성장과 생존)

  • Kim, Chul-Won;Yi, Seung-Won
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.2
    • /
    • pp.152-159
    • /
    • 2017
  • For the effective seedling production of the hard shelled mussel, Mytilus coruscus, this study assessed the effects of the dietary value of live food, density, water temperature and salinity on growth and survival rate of the larvae. The optimal survival rate and growth rate were examined under differing conditions of water temperature, salinity, and rearing density for 30 days. The three groups were provided different feeding organisms, such as Isochrysis galbana and Teleaulax suecica. The mixtures were provided at a rate of $5{\times}10^4cell\;mL^{-1}$. The best growth was observed in the group with conditions $21^{\circ}C$ water temperature ($16.2{\pm}9.1{\mu}m$), 33 psu of salinity ($16.82{\pm}3.9{\mu}m$), $2500individual\;m^{-2}$ ($17.2{\pm}5.9{\mu}m$), and fed with $5{\times}10^4cell\;mL^{-1}$ of I. galbana and T. suecica mixture ($16.0{\pm}7.3{\mu}m$). The highest survival rate was found in the group at conditions $18^{\circ}C$ water temperature (66.4%), 33 psu of salinity (24.4%), $2500individual\;m^{-2}$ (65.8%), and fed with $5{\times}10^4cell\;mL^{-1}$ of I. galbana and T. suecica mixture (58.8%). We therefore conclude that the suitable culture conditions for the stable production of hard shelled mussel artificial seedlings was at 18 to $21^{\circ}C$ of temperature, 30 to 33 psu of salinity, 2500 to $5000individual\;m^{-2}$ of rearing density, and feeding supplement of $5{\times}10^4cell\;mL^{-1}$ of I. galbana and T. suecica mixture under semi running water system.

The Effect of the Storage Duration and Temperature of EDTA Specimen for CBC and WBC Differential Count in SE-9000 Automated Cell Counter (SE-9000 자동 혈구계산기에서 EDTA 검체의 보관기간 및 온도가 CBC 및 백혈구 감별계산에 미치는 영향)

  • Hong, Seung-Bok;Kim, Jong-Seok;Shin, Kyeong-Seob
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.38 no.3
    • /
    • pp.147-151
    • /
    • 2006
  • Although various automated CBC analyzers with different WBC analytical principles were consequently introduced to clinical laboratory, the specific information concerning the suitability or unsuitability of aging samples is scarce. For this reason, we studied the effect of storage duration and temperature on CBC parameter in SE-9000 (SYSMEX Medical Electronics Co., Ltd., Kobe, Japan), automated CBC analyzer. We tested 32 K3-EDTA specimens with SE-9000 during 72 hours. Specimens were kept at room temperature (RT) and refrigerated and were analyzed at 0 hr, 4 hr, 8 hr, 24 hr, 48 hr and 72 hr after the collection of the specimens. The percentage changes from initial value for each parameters were calculated. Among the CBC parameters, hemoglobin, red blood cell count, mean corpuscular hemoglobin and platelets were stable for the study period at both temperatures. The mean corpuscular volume (MCV), hematocrit (Hct) and red cell distribution (RDW) increased and the mean corpuscular hemoglobin concentration (MCHC) decreased over time at room temperature. These parameters were stable when refrigerated. The leukocyte count was stable during 72hr at RT and when refrigerated. At room temperature, the relative percentages of neutrophils tend to increase, whereas those of lymphocyte and monocytes tend to decrease after 48 hours. When refrigerated, those of neutrophils and monocytes tend to increase, whereas those of lymphocytes tend to decreased over time. CBC parameters of refrigerated specimen were reliable for 72 hr for the exception of differential count from 24 hr but many CBC parameters, such as MCV, Hct, MCHC, RDW and differential count of leukocyte of blood stored at room temperature for 24 hr were unreliable.

  • PDF