• 제목/요약/키워드: Cell surface hydrophobicity

검색결과 58건 처리시간 0.024초

Surface Characteristics and Adhesive Properties of Pichia farinosa SKM-1, Pichia anomala SKM-T, and Galactomyces geotrichum SJM-59 for Preparation of Probiotics

  • Mo, Eun-Kyoung;Lee, Mee-La;Lee, Sun-Young;Kim, Jae-Cheon;Sung, Chang-Keun
    • Food Science and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.493-497
    • /
    • 2005
  • Probiotics are generally excreted within a few days if their ingestion in feces at the same rate as or even more quickly than a transit marker (meaning not clear). Ability of probiotics to adhere to intestine prolongs their persistence in gastrointestinal tract, allowing them to exert healthful effects longer. Hydrophobicities, zeta potentials, Alcian blue-binding capacities, and sedimentation profiles of Pichia farinosa SKM-1, P. anomala SKM-T, and Galactomyces geotrichum SJM-59 were determined to evaluate characteristic properties of cell surfaces responsible for adhesion. Results of intestinal Caco-2 cell line in vitro and murine intestine in vivo studies revealed these strains exhibit adhesive properties regardless of their cell surface hydrophobicity.

Antibacterial and Antibiofilm Effect of Cell-Free Supernatant of Lactobacillus brevis KCCM 202399 Isolated from Korean Fermented Food against Streptococcus mutans KCTC 5458

  • Kim, Jong Ha;Jang, Hye Ji;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권1호
    • /
    • pp.56-63
    • /
    • 2022
  • This study aims to determine the antibiofilm effect of cell-free supernatant (CFS) of Lactobacillus brevis strains against Streptococcus mutans strains. To study the antibiofilm mechanism against S. mutans strains, antibacterial effects, cell surface properties (auto-aggregation and cell surface hydrophobicity), exopolysaccharide (EPS) production, and morphological changes were examined. The antibiofilm effect of L. brevis KCCM 202399 CFS as morphological changes were evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), compared with the control treatment. Among the L. brevis strains, L. brevis KCCM 202399 showed the highest antibiofilm effect on S. mutans KCTC 5458. The antibacterial effect of L. brevis KCCM 202399 against S. mutans KCTC 5458 was investigated using the deferred method (16.00 mm). The minimum inhibitory concentration of L. brevis KCCM 202399 against S. mutans KCTC 5458 was 25.00%. Compared with the control treatment, L. brevis KCCM 202399 CFS inhibited the bacterial adhesion of S. mutans KCTC 5458 by decreasing auto-aggregation, cell surface hydrophobicity, and EPS production (45.91%, 40.51%, and 67.44%, respectively). L. brevis KCCM 202399 CFS inhibited and eradicated the S. mutans KCTC 5458 biofilm. Therefore, these results suggest that L. brevis KCCM 202399 CFS may be used to develop oral health in the probiotic industry.

Fabrication of a Superhydrophobic Surface with Adjustable Hydrophobicity and Adhesivity Based on a Silica Nanotube Array

  • Yu, Jae-Eun;Son, Sang-Jun
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3378-3382
    • /
    • 2012
  • A superhydrophobic surface with a water contact angle > $150^{\circ}$ has attracted great interest from both fundamental and practical aspects. In this study, we demonstrated that hydrophobicity of a silica nanotube (SNT) array can be easily controlled by the SNT aspect ratio. In addition, the adhesive and anti-adhesive properties were controlled without modifying the hydrophobic surface. Various silica structures on a polydimethylsiloxane substrate were prepared using the desired alumina template. Bundle-arrayed and bowl-arrayed silica surfaces exhibited extraordinary superhydrophobicity due to the large frontal surface area and hierarchical micro/nanostructure. As the strategy used in this study is biocompatible and a wide range of hydrophobicities are capable of being controlled by the SNT aspect ratio, a hydrophobic surface composed of an SNT array could be an attractive candidate for bioapplications, such as cell and protein chips.

Comparison of Environmental Stress Tolerance Between Lactobacillus fermentum Strains with High and Low Cell Surface Hydrophobicity

  • Li, Shao-Ji;Jeon, Jeong-Min;Hong, Sang-Won;So, Jae-Seong
    • Food Science and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.257-261
    • /
    • 2008
  • Previous studies have suggested a possible correlation between cell surface hydrophobicity (CSH) and stress tolerance in Bifidobacterium. In this study, the relationship was examined between CSH and environmental stress tolerance in Lactobacillus spp. By measuring the adhesion to hexadecane, 2 Lactobacillus fermentum strains- KLB 261 and KLB 231 were found to have high and low CSH, respectively. To measure their tolerance to various stresses, cells were subjected to salt (2 M NaCl), acid (pH 2), $H_2O_2$ (0.01 %, v/v), ethanol (20%, v/v), heat ($60^{\circ}C$), and cold ($-20^{\circ}C$). Compared with KLB 231, the hydrophobic KLB 261 was found to be much more resistant to the various stresses examined. After being subjected to different stresses for a period of time, KLB 261 and KLB 231 showed 50 and 0% survivability in 2 M NaCl, 108.2 and 0.6% in 0.01 %(v/v) $H_2O_2$, 40.2%(v/v), and 3.7% at $60^{\circ}C$ incubation, 4 and 0.6% at $-20^{\circ}C$, 12.9 and 0.1 % in pH 2, 33.8 and 0.2% in 20%(v/v) ethanol, respectively. Autoaggregation test and morphological observation were also conducted in an attempt to explain these differences. These results suggested that high CSH could strengthen the stress tolerance of lactobacilli.

Virulence, Resistance Genes, and Transformation Amongst Environmental Isolates of Escherichia coli and Acinetobacter spp.

  • Doughari, Hamuel James;Ndakidemi, Patrick Alois;Human, Izanne Susan;Benade, Spinney
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권1호
    • /
    • pp.25-33
    • /
    • 2012
  • The association of verotoxic E. coli and Acinetobacter spp. with various antibiotic-resistant, diarrhogenic, and nosocomial infections has been a cause for concern worldwide. E. coli and A. haemolyticus isolated on a number of selective media were screened for virulence factors, antibiotic resistance, and transformation of resistance genes. Out of 69 E. coli isolates obtained, 25 (35.23%), 14 (20.30%), and 28 (40.58%) were positive for Vtx1&2, Vtx1, and Vtx2, respectively, 49 (71.015%) for extendedspectrum beta-lactamases (ESBLs), 34 (49.28%) for serum resistance, 57 (82.61%) for cell surface hydrophobicity, 48 (69.57%) for gelatinase production, and 37 (53.62%) for hemolysin production. For the 14 A. haemolyticus isolates, only 2 (14.29%) in each case from all the samples investigated were positive for Vtx1, Vtx2 and Vtx1&2 respectively, 8 (57.14%) for ESBLs, 7 (50.00%) for serum resistance, 11 (78.57%) for cell surface hydrophobicity, 4 (28.57%) for gelatinase production, and 8 (57.14%) for hemolysin production. Although transformation occurred among the E. coli and Acinetobacter isolates (transformation frequency: $13.3{\times}10^{-7}-53.4^{-7}$), there was poor curing of the plasmid genes, a confirmation of the presence of stable antibiotic-resistant genes (DNA concentration between 42.7 and 123.8 ${\mu}g$) and intragenetic transfer of multidrug-resistant genes among the isolates. The isolates were potentially virulent and contained potentially transferable antibiotic resistance genes. Detection of virulence factors, antibiotic resistance genes, and transformation among these isolates is a very significant outcome that will influence approaches to proactive preventive and control measures and future investigations. However, continued surveillance for drug resistance among these bacteria and further investigation of the mechanism of action of their virulence factors are a necessity.

Bifidobacteria의 Caco-2 Cell 정착성에 미치는 영향 인자 (Factors Affecting the Adherence of Bifidobacteria to Caco-2 Cell)

  • 김응률;정후길;전석락;유제현
    • 한국축산식품학회지
    • /
    • 제21권2호
    • /
    • pp.133-141
    • /
    • 2001
  • Adherence of probiotic bacteria to intestinal epithelium is found to be the most principal characteristics among the various physiological functionality. This study was conducted to investigate the effect of bifidobacterial growth properties and condition on the Caco-2 cell adherence and to construct a basic data on adherence-related research. Among 20 strains of bifidobacteris tested, when measured by cell surface hydrophobicity(CSH) and cell agglutination(CA), Bifidobacterium bifidum ATCC29521, Bif. adolescentis K8, and Bif. infantis K9 were selected. Using these strains, variations of Caso-2 cell adherence depending upon experimental condition were analyzed. The results obtained are as follows : Even though Bif. bifidum ATCC29521, Bif. adolescentis K8, and Bif. infantis K9 reached more 85% cell surface hydrophobicity there was no significant difference in cell agglutination, when reached 31.54$\pm$0.54mg/ml. By direct count method for adherence, viable cell count of M3, K1, K2, K8, K9 and K10 reached more 100 counts per 100 Caco-2 cells. When Bif. bifidum ATCC29521, Bif. adolescentistis K8, and Bif. infantis K9 were used to compare the adherence depending upon viable cell counts, reaction time, and growth phase, the more viable cell count, and the more adhered cell counts, the less adherence percentage. In addition, there was no difference in adherence percentage of bifidobacteria when bifidobacteria was incubated from 1 to 8 hrs after Caco-2 cells already formed monolayer. Considering of the effect of growth phase of bifidobacteria on adherence variation, all strains showed the highest adherence during the early stage of stationary phase. In conclusion, adherence of bifidobacteria was affected by strain specificity, viable cell count, and growth activity.

  • PDF

Altered cell surface hydrophobicity of Lactobacillus paracasei KLB58 isolated from human vagina

  • Choi, Yun-Do;Oh, Eun-Taex;So, Jae-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XIII)
    • /
    • pp.452-459
    • /
    • 2003
  • 본 실험을 수행하기 위해 EPS를 생산하지 않는 Lactobacillus paracasei KLB58의 돌연변이주를 NTG mutagenesis 방법을 사용하여 선별하였다. 선별된 돌연변이주의 숙주에 대한 부착능을 연구하기 위해 세포 표면의 소수성의 변화에 관하여 연구가 진행되었다. 정량적인 측정을 위해 hydrocarbon의 한 종류인 hexadecane을 소수성층으로 사용하여 세포와 함께 섞이는 kinetics를 측정하였다. 실험결과 KLB58의 돌연변이주는 야생형에 비해 세포표면이 상대적으로 높은 소수성을 나타내었다.

  • PDF

락토바실러스 아시도필러스 CBT LA1 생균과 사균체의 세포부착력, 자가응집력, 소수성 상호작용력, LPS 결합력에 대한 평가 (Assessment of cell adhesion, cell surface hydrophobicity, autoaggregation, and lipopolysaccharide-binding properties of live and heat-killed Lactobacillus acidophilus CBT LA1)

  • 신주현;이중수;서재구
    • 미생물학회지
    • /
    • 제51권3호
    • /
    • pp.241-248
    • /
    • 2015
  • 프로바이오틱스에 대한 연구는 주로 생균의 효과가 많이 알려져 있지만 가열 처리된 유산균인 사균체의 기능에 대한 연구도 활발히 이루어지고 있다. 본 연구에서는 락토바실러스 아시도필러스 CBT LA1의 사균체의 장관장벽 기능에 대하여 in vitro, in vivo에서 실험하였다. 이를 위하여, 세포표면 소수성 상호작용력(cell surface hydrophobicity), 자가응집력(autoaggregation), 세포에 부착하는 능력(cell adhesion)과 자가응집력(autoaggregation), LPS와의 결합력을 조사하였다. 또한 HT-29 장상피세포에서 LPS로 유도되는 IL-8의 발현을 억제하는 효과를 조사하였다. CBT LA1을 80도에서 121도까지 10분 동안 열을 처리하였을 때, 80도에서 열을 처리한 CBT LA1 사균체가 가장 높은 세포에 부착하는 능력을 보여 주었다. CBT LA1 생균과 비교했을 때, 80도에서 열을 처리한 CBT LA1 사균체는 높은 LPS와의 결합력, 소수성 상호작용력, 자가응집력, HT-29 세포에 부착하는 능력과 IL-8의 발현을 억제하는 능력을 보여주었다. In vivo 실험에서 FITC로 label된 LPS를 투여하였을 때 16시간 후, CBT LA1 사균체를 섭취한 동물의 장관 내 LPS가 가장 많이 제거되었다. 이러한 연구 결과들은 CBT LA1 생균처럼 CBT LA1 사균체도 장관장벽 기능을 가지며 이는, 파마바이오틱스로서 그 가능성을 시사한다.

Root canal irrigants influence the hydrophobicity and adherence of Staphylococcus epidermidis to root canal dentin: an in vitro study

  • Nagendrababu, Venkateshbabu;Sultan, Omer Sheriff;Kannathasan, Sreedharan;Patel, Amir Shahreza;Chitra, Ebenezer;Neelakantan, Prasanna;Davamani, Fabian
    • Restorative Dentistry and Endodontics
    • /
    • 제43권1호
    • /
    • pp.1.1-1.8
    • /
    • 2018
  • Objectives: To determine the effect of root canal irrigants on the hydrophobicity and adherence of Staphylococcus epidermidis (S. epidermidis) to root canal dentin in vitro. Materials and Methods: Root dentin blocks (n = 60) were randomly divided into 4 groups based on the irrigation regimen: group 1, saline; group 2, 5.25% sodium hypochlorite (NaOCl); group 3, 5.25% NaOCl followed by 17% ethylenediaminetetraacetic acid (EDTA); group 4, same as group 3 followed by 2% chlorhexidine (CHX). The hydrophobicity of S. epidermidis to root dentin was calculated by cell surface hydrophobicity while the adherence was observed by fluorescence microscopy, and bacteria were quantified using ImageJ software (National Institutes of Health). Statistical analysis of the data was done using Kruskal-Wallis test and Mann-Whitney U test (p = 0.05). Results: The hydrophobicity and adherence of S. epidermidis to dentin were significantly increased after irrigating with group 3 (NaOCl-EDTA) (p < 0.05), whereas in group 4 (NaOCl-EDTA-CHX) both hydrophobicity and adherence were significantly reduced (p < 0.05). Conclusions: The adherence of S. epidermidis to dentin was influenced differently by root canal irrigants. Final irrigation with CHX reduces the bacterial adherence and may impact biofilm formation.

가자미식해에서 분리한 유산균의 프로바이오틱스 특성 (Probiotic Properties of Lactobacillus spp. Isolated from Gajami Sikhae)

  • 배은영;조기운;김지혜;정성근;조영제;김병오
    • 생명과학회지
    • /
    • 제33권4호
    • /
    • pp.334-342
    • /
    • 2023
  • 가자미식해에서 분리된 유산균 40종은 Lactobacillus plantarum spp., Leuconostoc mesenteroides spp., Lactobacillus brevis spp., and Weisella paramenteroides spp.로 확인됐으며, 40종 중 10종을 선별해 검사에 사용했다. 본 연구에서는 가자미식해에서 분리된 유산균을 프로바이오틱스로 활용하기 위해 산 및 인공위액 저항성, 담즙산 저항성, 자가 응집성, 공동 응집성, 세포 표면 소수성 등의 프로바이오틱 연구를 수행하였다. 분리한 유산균주는 산성 및 인공 위액에 대해 저항성을 보여 높은 생존율을 나타내었으며, L. plantarum GS11이 가장 뛰어난 저항성을 보였다. 또한 담즙산 저항성 측정 결과 모든 유산균주가 108~109 log CFU/ml의 생균수로, 100% 이상의 생존력을 보여주었다. 그리고 세포 표면 부착능을 간접적으로 측정하기 위해 응집력 평가를 한 결과, autoaggregation 능력을 46% 이상 나타내었다. 세포 표면 소수성 평가를 위해 Xylene 부착능을 측정한 결과 분리된 유산균주에서 32.2%의 소수성을 가지는 B. subtilis 보다 더 뛰어난 세포 부착률을 보여주었다. 이와같이 유산균은 프로바이오틱스로 활용될 만한 유의미한 결과를 보였으며, L. plantarum GS12와 L. plantarum GS13을 제외한 유산균에서 항균 활성이 나타났다. 따라서 가자미 식해에서 분리된 유산균은 다양한 프로바이오틱스 특성을 가진 프로바이오틱스로 활용할 수 있을 것으로 판단되어진다.