• Title/Summary/Keyword: Cell structure

Search Result 4,300, Processing Time 0.037 seconds

Application of Methodology for Microbial Community Analysis to Gas-Phase Biofilters (폐가스 처리용 바이오필터에 미생물 군집 분석 기법의 적용)

  • Lee, Eun-Hee;Park, Hyunjung;Jo, Yun-Seong;Ryu, Hee Wook;Cho, Kyung-Suk
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.147-156
    • /
    • 2010
  • There are four key factors for gas-phase biofilters; biocatalysts(microorganisms), packing materials, design/operating techniques, and diagnosis/management techniques. Biofilter performance is significantly affected by microbial community structures as well as loading conditions. The microbial studies on biofilters are mostly performed on basis of culture-dependent methods. Recently, advanced methods have been proposed to characterize the microbial community structure in environmental samples. In this study, the physiological, biochemical and molecular methods for profiling microbial communities are reviewed, and their applicability to biofilters is discussed. Community-level physiological profile is based on the utilization capability of carbon substrate by heterotrophic community in environmental samples. Phospholipid fatty acid analysis method is based on the variability of fatty acids present in cell membranes of different microorganisms. Molecular methods using DNA directly extracted from environmental samples can be divided into "partial community DNA analysis" and "whole community DNA analysis" approaches. The former approaches consist in the analysis of PCR-amplified sequence, the genes of ribosomal operon are the most commonly used sequences. These methods include PCR fragment cloning and genetic fingerprinting such as denaturing gradient gel electrophoresis, terminal-restriction fragment length polymorphism, ribosomal intergenic spacer analysis, and random amplified polymorphic DNA. The whole community DNA analysis methods are total genomic cross-DNA hybridization, thermal denaturation and reassociation of whole extracted DNA and extracted whole DNA fractionation using density gradient.

A Single-Bit 2nd-Order CIFF Delta-Sigma Modulator for Precision Measurement of Battery Current (배터리 전류의 정밀 측정을 위한 단일 비트 2차 CIFF 구조 델타 시그마 모듈레이터)

  • Bae, Gi-Gyeong;Cheon, Ji-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.3
    • /
    • pp.184-196
    • /
    • 2020
  • In this paper, a single-bit 2nd-order delta-sigma modulator with the architecture of cascaded-of-integrator feedforward (CIFF) is proposed for precision measurement of current flowing through a secondary cell battery in a battery management system (BMS). The proposed modulator implements two switched capacitor integrators and a single-bit comparator with peripheral circuits such as a non-overlapping clock generator and a bias circuit. The proposed structure is designed to be applied to low-side current sensing method with low common mode input voltage. Using the low-side current measurement method has the advantage of reducing the burden on the circuit design. In addition, the ±30mV input voltage is resolved by the ADC with 15-bit resolution, eliminating the need for an additional programmable gain amplifier (PGA). The proposed a single-bit 2nd-order delta-sigma modulator has been implemented in a 350-nm CMOS process. It achieves 95.46-dB signal-to-noise-and-distortion ratio (SNDR), 96.01-dB spurious-free dynamic range (SFDR), and 15.56-bit effective-number-of-bits (ENOB) with an oversampling ratio (OSR) of 400 for 5-kHz bandwidth. The area and power consumption of the delta-sigma modulator are 670×490 ㎛2 and 414 ㎼, respectively.

Spatio-temporal Variability of Phytoplankton Community in the Jeju Marine Ranching Area (JMRA) (제주 바다목장 해역 식물플랑크톤 군집의 시·공간적 변동 특성)

  • Yoon, Yang Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7761-7772
    • /
    • 2015
  • This study describes the spatio-temporal distributions in phytoplankton community such as species composition, standing crops and dominant species from April to November 2008 in the Jeju Marine Ranching Area (JMRA). A total of 106 species of phytoplankton belonging to 63 genera was identified. In particular, diatoms and dinoflagellates were occupied more than 61% and 35% of total species, respectively. The annual dominant species were Skeletonema costatum-like species(ls) in April, Torodinium teredo, Cylindrotheca closterium, Scrippsiella trochoidea in June, S. costatum - ls, Thalassionema nitzschioides, Pseudo-nitzschia pungens, Ebria tripartita in September and Corethron pennatum, Dictyocha fibura, Neoceratium teres in November. Phytoplankton cell density ranged between $0.6cells{\cdot}mL^{-1}$ in June and $64.0cells{\cdot}mL^{-1}$ in April. It fluctuated with an annual mean of $11.7cells{\cdot}mL^{-1}$ between the lowest value of $0.9cells{\cdot}mL^{-1}$ in November and the highest value of $37.0cells{\cdot}mL^{-1}$ by S. costatum -ls in April. Diversity index in September was higher than diatom blooming seasons in April. According to the phytoplankton community structure, the biological oceanographic characteristics of the JMRA was characterized by nanoplankton during a year. That is, primary production is deemed to have a higher possibility of being adjusted by a reproduction by material cycle in the ecosystems than nutrients supply from the lands.

Eine Structure of Cerebral Ganglion in the Korean Planaria, Dugesia japonica (한국산 플라나리아(Dugesia japonica) 뇌신경절의 미세구조)

  • Chang, Nam-Sub
    • Applied Microscopy
    • /
    • v.29 no.1
    • /
    • pp.57-66
    • /
    • 1999
  • The nervous tissue in the cerebral ganglion of Korean planaria was observed using electron microscope. The obtained results are as follows: A cerebral ganglion is composed of the nerve cells, neurosecretory cells, neuroglial cells and neuropils. The nerve cells are round or ovoidal-shaped cells (diameter, $5{\mu}m$), which has a large ellipsoidal nucleus containing the evenly developed heterochromatin. Their cytoplasms were found to be relatively simple, because of their undeveloped cell organelles. The neurosecretory cells are long and ellipsoid or spindle-shaped cells, where there were found a large ellipsoidal nucleus and cytoplasm filled with secretory granules (diameter, 60 nm). The neuroglial cells were seldom observed. They are spindle-shaped cells (size, $6\times0.8{\mu}m$), which were observed mainly among the nerve fibers. The neuropils are formed by the nerve fibers and nerve endings which are filled with mitochondria, neurotubules and secretory granules of four kinds (high electron dense granules of sizes 75 nm, 50 nm and 37 nm, and electron lucent granule of size 30 nm etc.). These granular vesicles are divided into single vesicle type and compound vesicle type in the nerve terminals, and neuronal synapses were observed to be the axo-dendritic and dendro-dendritic synapse type.

  • PDF

Eine Structure of Digital Arteries in Rat (흰쥐 수지동맥의 미세구조에 관한 연구)

  • Kim, Baik-Yoon;Shin, Keun-Nam
    • Applied Microscopy
    • /
    • v.29 no.1
    • /
    • pp.83-94
    • /
    • 1999
  • The ultrastructure of small arterioles and capillaries in the lumbrical muscles of rat digits were studied by electron microscopy and following results were obtained. 1. The diameter of small arterioles of rat digits were $12\sim20{\mu}m$, and it was relatively smaller than human $(30\sim35{\mu}m)$. 2. All the endothelial cells of small arterioles and capillaries in the lumbrical muscles of rat digits were continuous type, and they had typical morphological characteristics of continuous endothelial cells : numerous cytoplasmic pinocytic vesicles and many tight junctions between the endothelial cells. 3. In the small arterioles subendothelial layers were irregularly spaced beneath the basal lamina, and membrane to membrane contacts were found between the endothelial cells and smooth muscle cells. 4. Pericytes were often found nearby capillary endothelium, and their cytoplasmic processes surrounded part of endothelial cells. They were enclosed by basal lamina. 5. Smooth muscle cells in tunica media of small arterioles were only one layered, that is, they were terminal arterioles. Sarcoplasm of smooth muscle cell was divided to 2 areas; homogeneous or filamentous area and non-homogeneous perinuclear area. 6. The tunica adventitia contained fibroblasts with extremely attenuated cytoplasmic processes and collagen fibirls.

  • PDF

Effects of SIS Sponge and Bone Marrow-Derived Stem Cells on the Osteogenic Differentiation for Tissue Engineered Bone (SIS 스폰지와 골수유래줄기세포를 이용한 조직공학적 골분화 유도)

  • Park Ki Suk;Jin Chae Moon;Yun Sun Jung;Hong Keum Duck;Kim Soon Hee;Kim Moon Suk;Rhee John M.;Khang Gilson;Lee Hai Bang
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.501-507
    • /
    • 2005
  • Small intestinal submucosa (SIS) had been widely used as a biomaterial without immune rejection responses. SIS sponges prepared by crosslinking with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC). SIS powders dissolved in $3\%(v/v)$ acetic acid aqueous solution for 48hrs and freeze-dried. EDC solution ($H_2O$ : ethanol = 5 : 95) as a crosslink agent was used in concentration of 100mM. In vitro, rat-BMSCs seeded in SIS sponges and induced the osteogenesis for 28 days. We have characterized the osteogenic potential of rat-BMSCs in SIS sponges by alkaline phosphatase activity(ALP), n assay, SEM and RT-PCR for osteogenic phenotype. In SEM, all morphology of SIS sponges was regular and showed interconnected pore structure. By RT-PCR analysis, we observed type I collagen expression. These results demonstrate osteogenic differentiation of rat-BMSCs. In conclusion, we confirmed that the morphology of surface, cross-section, and side of SIS sponges were highly porous with good interconnections between each pores, which can support the surface of cell growth, proliferation, and differentiation. This result indicates that SIS sponge is useful for osteogenesis of BMSCs.

Reconstruction of the Bone Exposed Soft Tissue Defects in Lower Extremities using Artificial dermis(AlloDerm®) (인공 진피(알로덤®)을 이용한 하지의 골이 노출된 연부 조직 결손의 재건)

  • Jeon, Man Kyung;Jang, Young Chul;Koh, Jang Hyu;Seo, Dong Kook;Lee, Jong Wook;Choi, Jai Koo
    • Archives of Plastic Surgery
    • /
    • v.36 no.5
    • /
    • pp.578-582
    • /
    • 2009
  • Purpose: In extensive deep burn of the lower limb, due to less amount of soft tissue, bone is easily exposed. When it happens, natural healing or reconstruction with skin graft only is not easy. Local flap is difficult to success, because adjacent skins are burnt or skin grafted tissues. Muscle flap or free flap are also limited and has high failure rate due to deep tissue damage. The authors acquired good outcome by performing one - stage operation on bone exposed soft tissue defect with AlloDerm$^{(R)}$(LifeCell, USA), an acellular dermal matrix producted from cadaveric skin. Methods: We studied 14 bone exposed soft tissue defect patients from March 2002 to March 2009. Average age, sex, cause of burn, location of wound, duration of admission period, and postoperative complications were studied. We removed bony cortex with burring, until conforming pinpoint bone bleeding. Then rehydrated AlloDerm$^{(R)}$(25 / 1000 inches, meshed type) was applicated on wound, and thin split thickness(6 ~ 8 / 1000 inches) skin graft was done at the immediately same operative time. Results: Average age of patients was 53.6 years(25 years ~ 80 years, SD = 16.8), and 13 patients were male(male : female = 13 : 1). Flame burn was the largest number. (Flame burn 6, electric burn 3, contact burn 4, and scalding burn 1). Tibia(8) was the most affected site. (tibia 8, toe 4, malleolus 1, and metatarsal bone 1). Thin STSC with AlloDerm$^{(R)}$ took without additional surgery in 12 of 14 patients. Partial graft loss was shown on four cases. Two cases were small in size under $1{\times}1cm$, easily healed with simple dressing, and other two cases needed additional surgery. But in case of additional surgery, granulation tissue has easily formed, and simple patch graft on AlloDerm$^{(R)}$ was enough. Average duration of admission period of patients without additional surgery was 15 days(13 ~ 19 days). Conclusion: AlloDerm$^{(R)}$ and thin split thickness skin graft give us an advantage in short surgery time and less limitations in donor site than flap surgery. Postoperative scar is less than in conventional skin graft because of more firm restoration of dermal structure with AlloDerm$^{(R)}$. We propose that AlloDerm$^{(R)}$ and thin split thickness skin graft could be a solution to bone exposured soft tissue defects in extensive deep burned patients on lower extremities, especially when adjacent tissue cannot be used for flap due to extensive burn.

Synthesis and Characteristics of Partially Fluorinated Poly(vinylidene fluroide)(PVDF) Cation Exchange Membrane via Direct Sulfonation (직접술폰화반응에 의한 부분불소화 Poly(vinylidene fluroide)(PVDF) 양이온교환막의 합성 및 특성)

  • Kang, Ki Won;Hwang, Taek Sung
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.406-414
    • /
    • 2015
  • In this study, partially fluorinated cation exchange membranes were prepared by direct sulfonation of Poly(VDF-co-hexafluoropropylene) copolymers (PVDF-co-HFP) followed by a casting method for application in the Membrane capacitive deionization (MCDI). The structure of sulfonated PVDF-co-HFP (SPVDF) was confirmed by Fourier-transform infrared (FT-IR) and $^1H$ Nuclear magnetic resonance ($^1H$ NMR) analysis. For quantitative analysis of the chemical composition, the X-ray Photoelectron Spectroscopy (XPS) was used. The membrane properties such as water uptake, ion exchange capacity and electrical resistance were measured. It was suggested that the optimum direct sulfonation condition of PVDF-co-HFP ion exchange membranes was $60^{\circ}C$ and 7 hours for temperature and duration of sulfonation, respectively. The water uptake of the SPVDF ion exchange membrane was 21.5%. The ion exchange capacity and electrical resistance were 0.89 meq/g and $3.70{\Omega}{\cdot}cm^2$, respectively. It was investigated that if it is feasible to apply these membranes in MCDI at various cell potentials (0.9~1.5 V) and initial flow rates (10~40 mL/min). In the MCDI process, the maximum salt removal rate was 62.5% in repeated absorption-desorption cycles.

Micro-Spot Atmospheric Pressure Plasma Production for the Biomedical Applications

  • Hirata, T.;Tsutsui, C.;Yokoi, Y.;Sakatani, Y.;Mori, A.;Horii, A.;Yamamoto, T.;Taguchi, A.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.44-45
    • /
    • 2010
  • We are currently conducting studies on culturing and biocompatibility assessment of various cells such as neural stem cells and induced pluripotent stem cells(IPS cells) on carbon nanotube (CNT), on nerve regeneration electrodes, and on silicon wafers with a focus on developing nerve integrated CNT based bio devices for interfacing with living organisms, in order to develop brain-machine interfaces (BMI). In addition, we are carried out the chemical modification of carbon nanotube (mainly SWCNTs)-based bio-nanosensors by the plasma ion irradiation (plasma activation) method, and provide a characteristic evaluation of a bio-nanosensor using bovine serum albumin (BSA)/anti-BSA binding and oligonucleotide hybridization. On the other hand, the researches in the case of "novel plasma" have been widely conducted in the fields of chemistry, solid physics, and nanomaterial science. From the above-mentioned background, we are conducting basic experiments on direct irradiation of body tissues and cells using a micro-spot atmospheric pressure plasma source. The device is a coaxial structure having a tungsten wire installed inside a glass capillary, and a grounded ring electrode wrapped on the outside. The conditions of plasma generation are as follows: applied voltage: 5-9 kV, frequency: 1-3 kHz, helium (He) gas flow: 1-1.5 L/min, and plasma irradiation time: 1-300 sec. The experiment was conducted by preparing a culture medium containing mouse fibroblasts (NIH3T3) on a culture dish. A culture dish irradiated with plasma was introduced into a $CO_2$-incubator. The small animals used in the experiment involving plasma irradiation into living tissue were rat, rabbit, and pick and are deeply anesthetized with the gas anesthesia. According to the dependency of cell numbers against the plasma irradiation time, when only He gas was flowed, the growth of cells was inhibited as the floatation of cells caused by gas agitation inside the culture was promoted. On the other hand, there was no floatation of cells and healthy growth was observed when plasma was irradiated. Furthermore, in an experiment testing the effects of plasma irradiation on rats that were artificially given burn wounds, no evidence of electric shock injuries was found in the irradiated areas. In fact, the observed evidence of healing and improvements of the burn wounds suggested the presence of healing effects due to the growth factors in the tissues. Therefore, it appears that the interaction due to ion/radicalcollisions causes a substantial effect on the proliferation of growth factors such as epidermal growth factor (EGF), nerve growth factor (NGF), and transforming growth factor (TGF) that are present in the cells.

  • PDF

The Changes of Stifle Joint Fluid with Cranial Cruciate Ligament Rupture in Dogs (개에 있어서 전방십자인대 단열시 슬관절액의 변화)

  • Nam-soo, Kim
    • Journal of Veterinary Clinics
    • /
    • v.20 no.4
    • /
    • pp.443-448
    • /
    • 2003
  • To determine whether localization of tartrate-resistant acid phosphatase (TRAP) and cathepsin K was associated with rupture of the cranial cruciate ligament (CCL) in dogs. Tissue specimens were obtained from 30 dogs with CCL rupture during surgical treatment, 8 aged normal dogs, and 9 young normal dogs that were necropsied for reasons unrelated to this study and unrelated to musculoskeletal disease. The cranial cruciate ligament was examined histologically. $TRAP^+$ cells and cathepsin $K^+$ cells were identified by histochemical staining and immunohistochemical staining respectively. TRAP and cathepsin $K^+$ were co-localized within the same cells principally located within the epiligamentous region and to a lesser extent in the core region of ruptured CCL. Localization of $TRAP^+$ cells (P < 0.05) and cathepsin $K^+$ cells (P =0.05) within CCL tissue was significantly increased in dogs with CCL rupture, compared with aged-normal dogs, and young normal dogs (P < 0.05 - TRAP, P < 0.001 - cathepsin K). Localization of $TRAP^+$ cells and cathepsin $K^+$ cells within the CCL tissue of aged-normal dogs was also increased compared with young normal dogs (P < 0.05). Small numbers of $TRAP^+$ cells and cathepsin $K^+$ cells were seen in the intact ligaments of aged-normal dogs, which were associated with ligament fasicles in which there was chondroid transformation of ligament fibroblasts and disruption of the organized hierarchical structure of the extracellular matrix. $TRAP^+$ cells and cathepsin $K^+$ cells were not seen in CCL tissue from young-normal dogs. Localization of the proteinases $TRAP^+$ and cathepsin $K^+$ in CCL tissue was significantly associated with CCL rupture. Small numbers of proteinase positive cells were also localized in the CCL of agednormal dogs without CCL rupture, but were not detected in CCL from young-normal dogs. Taken together, these findings suggest that the cell signaling pathways that regulate expression of these proteinases in CCL tissue may form part of the mechanism that leads to upregulation of collagenolytic ligament remodeling and progressive structural failure of the CCL over time.