• Title/Summary/Keyword: Cell stack

Search Result 583, Processing Time 0.028 seconds

Performance of a 1 kW PEMFC Stack Using the TiN-Coated 316 Stainless Steel Bipolar Piates (TiN이 코팅된 316 스테인리스강 분리판을 이용한 1 kW 급 고분자전해질 연료전지 스택의 운전특성)

  • Jeon, U.-S.;Jo, E.-A.;Ha, H.Y.;Hong, S.-A.;Oh, I.-H.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.1
    • /
    • pp.39-45
    • /
    • 2004
  • A 12-cell PEMFC stack was fabricated using the TiN-coated 316 stainless steel bipolar plates as substitute for the expensive and brittle graphite bipolar plates. Open cirtuit voltage and the maximum power of the stack was 12.08 V and 1.197 kW (199.5 A @ 6 V), respectively. Volumetric and gravimetric power density of the stack was calculated to be 373 W/L and 168 W/kg, respectively. Performance of each cell was quite uniform initially while degraded at a singnificantly different rate. During the 1,000 hr-operation at a constant load of 48 A, stack voltage decreased from 9.0 to 7.98 V at a degradation rate of 11 %/1,000 hr. However, degradation rate of each cell was in the wide rage from 1.2 to 31 %/1,000 hr.

Fabrication of 30W PAFC stack and its electrical performance (인산형 연료전지 30W급 스택제조 및 발전실험)

  • Kim, C.S.;Song, R.H.;Choi, B.W.;Han, S.O.;Choi, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.78-80
    • /
    • 1991
  • Preliminary multiple cell stack testing was performed using three-cell stack each electrode having an active area of $100cm^2$. The stack was operated at $190^{\circ}C$, the output power was 32W at 1.8V and maximum power was 69W. It was recorded as the first stack fabricated in Korea and continuous research works on the fabrication of stack, optimization of stack performance and long run tests will be conducted.

  • PDF

Temperature Characteristics of the Molten Carbonate Fuel Cell Stack (용융탄산염형 연료전지의 스택구조와 온도특성)

  • Lee, Choong-Gon;Ahn, Kyo-Sang;Park, Seong-Yeon;Seo, Hai-Kyung;Lim, Hee-Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.1
    • /
    • pp.54-61
    • /
    • 2004
  • Temperature characteristics in a stack of molten carbonate fuel cell (MCFC) have been investigated with simulation based on the computational fluid dynamics (CFD) codes and experimental way. The MCFC has generally two stack structures when the natural gas is used as fuel; one is the external reforming type and the other is internal reforming type. Computer simulation at the external reforming stack suggests that the maximum temperature in the stack depends on the gas flow length. The 2 kW MCFC stack with 25 cm gas flow length showed about $675^\circ{C}$ of maximum temperature.

Effects of the Methanol Concentration, Wind Velocity and Stack Temperature on the performance of Direct Methanol Fuel Cell (직접 메탄올 연료 전지의 성능에 대한 메탄올 농도, 풍속 및 스택 온도의 영향)

  • Kim, Yong-Ha;Kim, Seok-Il
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.2
    • /
    • pp.21-26
    • /
    • 2007
  • DMFC(Direct Methanol Fuel Cell) has been considered as an attractive option to produce electric power in many application. In this study, in order to estimate the effects of the methanol concentration, wind velocity and temperature on the performance of DMFC, a physical prototype of DMFC was designed and manufactured, and the stack voltage of DMFC was measured during the operation of DMFC. Expecially, the experimental results showed that a low stack temperature, a low wind velocity and an excess methanol concentration lead to the increase of the time to reach the maximum stack voltage.

  • PDF

Design of a 100 kW MCFC Stack and Power Generation System (100 kW급 용융탄산염 연료전지 스택 및 발전 시스템 설계)

  • Koh, Joon-Ho;Kang, Byoung-Sam;Lim, Hee-Chun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.146-151
    • /
    • 2001
  • Several design parameters for a 100 kW molten carbonate fuel cell stack was described. Approximately 170 cells are required to generate 100 kW at a current density of $125\;mA/cm^{2}$ with $6000\;cm^{2}$ cells. An overall heat balance was calculated to predict exit temperature. In order to limit the stack temperature in the range of $600-700^{\circ}C$, current load cannot exceed $75\;mA/cm^{2}$ at atmospheric operation. The 100 kW power is expected only under pressurization. Recycle of cathode gas by more than 50% is recommended to run the stack at $125\;mA/cm^{2}$ and 3 atm. Manifolds should be designed based on gas flow rates for the suggested operating condition.

  • PDF

Development of the 1kW Class Regenerative Fuel Cell for Ground Simulator of Regeneration Electric Power System (재생전원 시스템의 지상 시뮬레이터용 1kW급 재생형 연료전지 개발)

  • Kim, Hyung-Mo;Yang, Cheol-Nam;Hong, Byung-Sun;Park, Young-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1117-1122
    • /
    • 2006
  • The PEM type regenerative fuel cell(RFC) for the ground simulator of the regeneration electric power system has been designed, manufactured, and tested. In this paper, the designing and manufacturing procedures of the RFC were presented. Also, the performance test results were showed briefly. The RFC consists of PEM type stack, humidifier, pressure and flow control valve, storage tanks, pump and controller. The performance tests were carried out with stack and system performance tests. The performance targets are more than 50% stack efficiency, 1.5kW stack power, less 400W parasitic power in design condition. Most of the performances required are satisfied.

Methods for Diagnosis and Minimum PT-Loading of PEM Fuel Cell Stack (자동차 연료전지 진단 및 백금 촉매제 최소화에 대한 연구)

  • Yoo, Seoug Yeol;Lee, Young-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.105-108
    • /
    • 2013
  • To resolve global environmental problems, many automobile companies are making a great deal of effort to develop so-called green-cars. One of the solutions is an electric vehicle equipped with the PEMFC (Proton Exchange Membrane Fuel Cell) stack. However, the cost of the stack, at the moment, is still too high. This obstacle must be resolved for commercialized fuel cell cars. One of the reasons for high cost is a relatively large amount of Pt (platinum) in the membrane. In this paper, a method for reducing the Pt-loading is introduced. Furthermore, the durability of the stack will be important for a company to stay competitive in world markets (in the future). For this, the diagnosis of the stack must be conducted on-line. Some diagnosis methods as key technology are also introduced in this paper.

Evaluation of Long Term Operation of Cross-flow Molten Carbonate Fuel Cell Stack (교차류형 100W급 용융탄산염 연료전지 스택 장기운전평가)

  • Lim, H.C.;Seol, J.H.;Ryu, C.S.;Lee, C.W.;Hong, S.A.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.6 no.2
    • /
    • pp.53-63
    • /
    • 1995
  • A 100kW class stack consisting of 10 molten carbonate fuel cells has been fabricated. Internally manifold stack has been tested for endurance. Each cell in the stack had an electrode area of $100cm^2$ and reactant gases were distributed in each cells in a cross-flow configuration. Initial and long term operation performance of the stack was investgated as a function of gas utilization using a specially designed small scale stack test facility. It was possible to have a stack with an output of more than 100W using an anode gas of 72% $H_2/18%$ $CO_2/10%H_2O$ and cathode gas of 33% $O_2/67%$ $CO_2$ and 70% Air 30% $CO_2$. The output and voltage of the stack at a current 15A($150mA/cm^2$) and gas utilization of 0.4 showed 125.8W and 8.39V respectively by elapsed time of 310 hours operation. In long term operation characteristics, the voltage drop of 52.4mV/1000hour was observed after more than 1,840 hours operation. Among the voltage drop, the OCV loss was highest than other voltage loss such as internal resistance and electrode polarization. Non uniformity of 2voltages and degradation of cell voltage in the stack was observed in according to changing the utilization rate after a long term operation. Further work for increasing the performance prolonging the life of the stack are required.

  • PDF

Fabrication and Performance Evaluation of Tubular Solid Oxide Fuel Cells Stack (원통형 고체산화물 연료전지 스택 제작 및 성능평가)

  • Kim, Wanje;Lee, Seungbok;Song, Rakhyun;Park, Seokjoo;Lim, Takhyoung;Lee, Jongwon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.467-471
    • /
    • 2013
  • In present work, optimized the manufacturing process of anode-supported tubular SOFCs cell and stack were studied. For this purpose, we first developed a high performance tubular SOFC cell, and then made electrical connection in series to get high voltage. The gas sealing was established by attaching single cells to alumina jig with ceramic bond. Through these process, we can obtain such high OVP as around 15V, which means that the electrical connection and gas sealing were optimized. Finally we developed a new tubular SOFC stack which shows a maximum power of 65W @ $800^{\circ}C$.

Simulation Study of the Phosphoric Acid Fuel Cell Stack (인산형 연료전지 스택의 전산모사)

  • Choi, Sungwoo;Lee, Kab soo;Kim, Hwayong
    • Clean Technology
    • /
    • v.7 no.4
    • /
    • pp.243-250
    • /
    • 2001
  • The fuel cell has been continuously studied as environment-compatible alternative energy technology. Lately the basic techniques about stacking and widening are considered to be important for practical use. Although phosphoric acid fuel cell (PAFC) is the most progressed one in the fuel cell technologies, few studies about temperature profile of the stack which can be the basic data for the fuel cell design have been reported yet. In this study, the temperature profile of PAFC stack was simulated. The temperature profiles of stack were obtained at various operating conditions, and when stack is operated the proper position to measure the temperature could be predicted. Also we can propose more effective cooling design. The standard deviation of the temperature profile of the proposed design was is about 50% smaller.

  • PDF