• 제목/요약/키워드: Cell stack

검색결과 584건 처리시간 0.032초

대면적 고분자전해질 연료전지의 데드엔드 운전 (Dead-end Mode Operation of a Large Scale PEM Fuel Cell Stack)

  • 정지훈;신현길;한인수;서하규;김민성;조성백;허태욱
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.83.1-83.1
    • /
    • 2010
  • A Dead-end mode operation is one of the best way to maximize the gas usage rate. But, some components of fuel cell stack like gas diffusion layer(GDL) or membrane can be damaged in dead-end mode operation. In this study, a Large Scale Polymer electrolyte membrane fuel cell(PEMFC) for a dead-end operation has been developed. The stack is composed with 4 cells which has over 400cm2 of active area. Hydrogen is used as a fuel, and oxygen is used as a oxidant. The dead-end operation performance was evaluated by a long-term dead-end mode operation. The fuel cell stack is operated over 1,500 hours in dead-end mode operating fuel cell test station. And the performance change of the fuel cell stack was investigated.

  • PDF

AMESet 기반 20 kW급 수소 연료전지 시스템 동특성 모델 해석 (Analysis of Dynamic Characteristics of 20 kW Hydrogen Fuel Cell System Based on AMESet)

  • 우종빈;김영현;유상석
    • 한국수소및신에너지학회논문집
    • /
    • 제34권5호
    • /
    • pp.465-477
    • /
    • 2023
  • In proton exchange membrane fuel cell (PEMFC), proper thermal management of the stack and moisture generation by electrochemical reactions significantly affect fuel cell performance. In this study, the PEMFC dynamic characteristic model was developed through Simcenter AMESim, a development program. In addition, the developed model aims to understand the thermal resin balance of the stack and performance characteristics for input loads. The developed model applies the thermal management model of the stack and the moisture content and permeability model to simulate voltage loss and stack thermal behavior precisely. This study extended the C based AMESet (adaptive modeling environment submodeling tool) to simulate electrochemical reactions inside the stack. Fuel cell model of AMESet was liberalized with AMESim and then integrated with the balance of plant (BOP) model and analyzed. And It is intended to be used in component design through BOP analysis. The resistance loss of the stack and thermal behavior characteristics were predicted, and the impact of stack performance and efficiency was evaluated.

전기 부하에 따른 용융탄산염 연료전지 스택 온도 분포에 관한 수치 해석 연구 (Numerical Studies of Cell Temperature Distribution in MCFC Stack According to Electrical Loads)

  • 김도형;김범주;이정현;강승원;임희천
    • 한국수소및신에너지학회논문집
    • /
    • 제21권4호
    • /
    • pp.258-263
    • /
    • 2010
  • A numerical stack model has been developed to predict the temperature at a constant-load operation of molten carbonate fuel cell stacks. For the validity of the model, the simulated results with several boundary conditions were compared in the cell temperature data obtained from 75 kW class MCFC stack operation. It was shown that the simulated results with the existing boundary condition, which the stack outlet temperature was fixed at $650^{\circ}C$, didn't match well with the measured data. On the other hand, the stack model with the outlet temperature modified by the outlet manifold temperature measured from the stack under several electric loads was found to explain the measured cell temperature distribution well. The results show that the model can be used to predict the cell temperature distribution in the stacks by the measurement of the manifold outlet temperature.

고온 고분자전해질 연료전지 박판형 분리판의 유로 설계 및 스택 성능 평가 (Flow Field Design and Stack Performance Evaluation of the Thin Plate Separator for High Temperature Polymer Electrolyte Membrane Fuel Cell)

  • 김지홍;김민진;김진수
    • 한국수소및신에너지학회논문집
    • /
    • 제29권5호
    • /
    • pp.442-449
    • /
    • 2018
  • Research on High temperature polymer electrolyte fuel cell (HT-PEMFC) has actively been conducted all over the world. Since the HT-PEMFC can be operated at a high temperature of $120-180^{\circ}C$ using phosphoric acid-doped polybenzimidazole (PBI) electrolyte membrane, it has considerable advantages over conventional PEMFC in terms of operating conditions and system efficiency. However, If the thermal distribution is not uniform in the stack unit, degradation due to local reaction and deterioration of lifetime are difficult to prevent. The thin plate separator reduces the volume of the fuel cell stack and improves heat transfer, consequently, enhancing the cooling effect. In this paper, a large area flow field of thin plate separator for HT-PEMFC is designed and sub-stack is fabricated. We have studied stack performance evaluation under various operating conditions and it has been verified that the proposed design can achieve acceptable stack performance at a wide operating range.

건물용 고체산화물연료전지 스택 안전성능평가 연구 (Study on safety performance evaluation of stationary SOFC stack)

  • 박태성;이은경;이승국
    • 에너지공학
    • /
    • 제27권4호
    • /
    • pp.1-12
    • /
    • 2018
  • SOFC (Solid Oxide Fuel Cell) stack 안전성능 평가항목 및 평가절차 도출을 위하여 국내 외 연료전지 관련 규격들을 분석하였으며, 분석을 통해 도출된 시험항목으로 SOFC stack 안전성능 시험을 실시하였다. 시험에 사용된 SOFC stack은 (주)미코사(社)에서 제작된 음극 지지형 2 cell stack(활성면적: $110.25cm^2/cell$)이고, 평가장치는 자체 제작한 SOFC stack 안전성능 평가 장치를 사용하였다. 기밀성능 시험, 전류전압특성 시험, 정격출력 시험 및 부하변동 시험을 실시하였으며, 그 결과 해당 stack의 최대출력은 65.6 W(1.41 V, 46.5 A, $422mA/cm^2$), 정격출력은 62.3 W(1.57 V, 40 A, $363mA/cm^2$)로 나타났으며 가스누출이 없음을 확인하였다. 또한, 부하변동에 대하여 2초 이내에 안정적으로 출력이 유지되는 것을 확인하였다. 이때 운전 온도 $750^{\circ}C$에서 최대부하(40 A) 및 최소부하(8 A)에서의 출력은 각 62 W와 16 W로 측정되었다. 본 연구를 통하여 고체산화물연료전지의 보급화와 안전한 사용 환경을 제공하는데 기여하고자 한다.

평판형 연료전지 스택의 제조를 위한 매니폴드 형상별 압력분포 시뮬레이션 (Pressure Distribution Simulation on Geometrical Manifolds Structure for Fabrication of a Planar-type Fuel-Cell Stack)

  • 박세준;최용성;이경섭
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.609-614
    • /
    • 2009
  • A fuel-cell power system among various alternative power sources has many advantages such as comparatively independable circumstances, high-efficient, and heat-recyclable, thus it is now able to be up to hundreds MWh-scaled through improving feasibility and longevity of it. During the last few decades, numerous research results has been investigated to expand interest in fuel-cell technology. This study presents pressure distribution on the geometrical manifold structures, which are U-type and Z-type, of a planar-type fuel-cell stack by simulated with computational fluid dynamics(CFD). Then, electrical performance of a 200W fuel-cell stack, which is U-type, was diagnosed after pre-conditioning operation. The stack has electrical characteristics ; 22V, 10A, 220W, and current density $200mA/cm^2$.

적층형 압전재료를 이용한 초정밀 선형 모터에 관한 연구 (Research for ultra precision linear motor by using piezo stack actuators)

  • 임장환;김재환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.649-654
    • /
    • 2003
  • This paper is focused on the research of the ultra precision linear motor by using piezo stack actuators. The development of linear motor which can be controlled nano or micro scale is necessary for the precision manufacturing. Self-moving-cell principle is used for the design of linear motor Self-moving-cell linear motor is consisted of three cell structures, and each cell has two shells and one piezo-stack actuator. Each cell can do clamping and moving by two shell structures. The shell structure deformation by piezo stack actuator can move the linear motor by losing the clamping between the shall and guideway. This paper presents the design, manufacturing and test of the motor.

  • PDF

고분자 전해질 연료전지 스택에서 전해질막의 열화 가속시험 (Accelerated Degradation Test of Electrolyte Membrane in PEMFC Stack)

  • 정재진;이세훈;이혜리;김세훈;안병기;고재준;박권필
    • Korean Chemical Engineering Research
    • /
    • 제54권1호
    • /
    • pp.6-10
    • /
    • 2016
  • 최근까지 고분자전해질 연료전지(PEMFC)의 열화연구는 대부분 단위전지에서 연구되었다. 그런데 실제 PEMFC의 구동과 열화는 PEMFC 스택에서 이루어진다. 그래서 본 연구에서는 스택에서 열화가속 시험을 진행하여 단위전지의 결과와 비교하였다. 여러 종류의 열화 가속 시험 중에서 전기화학적 열화와 기계적 열화를 반복해 고분자전해질 막을 열화시키는 방법을 사용했다. 312시간 동안 전해질막을 열화시킨 후 0.6V에서 전류밀도는 스택과 단위전지에서 각각 28.4%, 27.8% 감소했다. 수소 투과 전류밀도는 스택은 16.8% 단위전지는 15.2% 증가했다. 스택과 단위전지에서의 열화 가속 시험 결과가 비슷해 단위전지의 가속 시험 방법을 스택에 적용해도 됨을 확인하였다.

고온형 고분자 전해질 연료전지 스택 내부의 냉각판 수가 스택에 미치는 열 영향성의 수치적 연구 (Analysis of Thermal Effect by Coolant Plate Number in High-Temperature Polymer Electrolyte Membrane Fuel Cell Stack)

  • 최병욱;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제26권2호
    • /
    • pp.127-135
    • /
    • 2015
  • High-Temperautre Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC) with phosphoric acid-doped polybenzimidazole (PBI) membrane has high power density because of high operating temperature from 100 to $200^{\circ}C$. In fuel cell stack, heat is generated by electrochemical reaction and high operating temperature makes a lot of heat. This heat is caouse of durability and performance decrease about stack. For these reasons, heat management is important in HT-PEMFC. So, we developed HT-PEMFC model and study heat flow in HT-PEMFC stack. In this study, we placed coolant plate number per cell number ratio as variable and analysed heat flow distribution in stack.

25 kW급 용융 탄산염 연료 전지 스택의 상압 및 가압 운전 (Atmospheric and Pressurized Operation of a 25 kW MCFC Stack)

  • 고준호;서혜경;임희천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.264-269
    • /
    • 2000
  • As a part of the ongoing effort towards commercial application of high-temperature fuel cell power generation systems, we have recently built a pilot-scale molten carbonate fuel cell power plant and tested it. The stack test system is composed of diverse peripheral units such as reformer, pre-heater, water purifier, electrical loader, gas supplier, and recycling systems. The stack itself was made of 40cells of $6000cm^2$ area each. The stack showed an output higher than 25kW power and a reliable performance at atmospheric operation. A pressurized performance was also tested, and it turned out the cell performance increased though a few cells have shown a symptom of gas crossover. The pressurized operation characteristics could be analyzed with numerical computation results of a stack model.

  • PDF