• Title/Summary/Keyword: Cell separation/Cell purification

Search Result 39, Processing Time 0.029 seconds

$H_{2}S$ Removal and $CO_{2}/CH_{4}$ Separation of Ternary Mixtures Using Polyimide Hollow Fiber Membrane (폴리이미드 중공사막을 이용한 혼합기체로부터 $H_{2}S$ 제거 및 $CO_{2}/CH_{4}$ 분리에 관한 연구)

  • Park, Bo-Ryoung;Kim, Dae-Hoon;Jo, Hang-Dae;Seo, Yong-Seog;Hwang, Taek-Sung;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.250-255
    • /
    • 2011
  • In this study, by using the polymeric membrane separation process, the $CO_{2}/CH_{4}$ separation and $H_{2}S$ removal from biogas were performed in order to $CH_{4}$ purification and enrichment for the fuel cell energy source application. Fibers were spun by dry/wet phase inversion method. The module was manufactured by fabricating fibers after surface coating with silicone elastomer. The scanning electron microscopy(SEM) studies showed that the produced fibers typically had an asymmetric structure; a dense top layer supported by a porous, sponge substructure. The permeance of $CO_{2}$ and $CO_{2}/CH_{4}$ selectivity increased with pressure and temperature. Mixture gas with increasing pressure and temperature, removal efficiency of the $CO_{2}$ and $H_{2}S$ were decreased while concentration of $CH_{4}$ was increased up to 100%. When retentate flow rate was increased with the decreasing of pressure and temperature the $CH_{4}$ recovery ratio in retentate side was increased while the $CH_{4}$ purity in retentate side was decreased.

Development of a predictive model of the limiting current density of an electrodialysis process using response surface methodology

  • Ali, Mourad Ben Sik;Hamrouni, Bechir
    • Membrane and Water Treatment
    • /
    • v.7 no.2
    • /
    • pp.127-141
    • /
    • 2016
  • Electrodialysis (ED) is known to be a useful membrane process for desalination, concentration, separation, and purification in many fields. In this process, it is desirable to work at high current density in order to achieve fast desalination with the lowest possible effective membrane area. In practice, however, operating currents are restricted by the occurrence of concentration polarization phenomena. Many studies showed the occurrence of a limiting current density (LCD). The limiting current density in the electrodialysis process is an important parameter which determines the electrical resistance and the current utilization. Therefore, its reliable determination is required for designing an efficient electrodialysis plant. The purpose of this study is the development of a predictive model of the limiting current density in an electrodialysis process using response surface methodology (RSM). A two-factor central composite design (CCD) of RSM was used to analyze the effect of operation conditions (the initial salt concentration (C) and the linear flow velocity of solution to be treated (u)) on the limiting current density and to establish a regression model. All experiments were carried out on synthetic brackish water solutions using a laboratory scale electrodialysis cell. The limiting current density for each experiment was determined using the Cowan-Brown method. A suitable regression model for predicting LCD within the ranges of variables used was developed based on experimental results. The proposed mathematical quadratic model was simple. Its quality was evaluated by regression analysis and by the Analysis Of Variance, popularly known as the ANOVA.

Anti-wrinkle Activity of $\beta$-carotene Extracted & Purified from Recombinant Escherichia coli (재조합 대장균으로부터 추출.정제된 베타-카로틴의 주름개선 활성)

  • Jo, Ji-Song;Ku, Bo-Mi;Kang, Sang-Soo;Lee, Jae-Ran;Kim, You-Geun;Lee, He;Kim, Sung-Bae;Kim, Seon-Won;Kim, Chang-Joon;Chung, In-Young
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.513-518
    • /
    • 2008
  • This paper described the extraction/purification of $\beta$-carotene from recombinant E.coli and evaluation of anti-wrinkle activity of purified $\beta$-carotene. No significant differences in extraction yields were observed when hexane or isobutyl acetate was used. However, extraction from wet-cell cake resulted in 2-fold higher amount of $\beta$-carotene than that from dry cells. Disruption of 5 g-wet cells by ultrasonic homogenizer, acetone dehydration, extraction with isobutyl acetate resulted in 36 mg of $\beta$-carotene corresponding to 61.2% of recovery. The formation and separation of $\beta$-carotene crystal improved the purity. 633 mg of $\beta$-carotene crystal with 93% purity was obtained from 223 g/L of wet-cell cake harvested from 2.5-L fed-batch culture broth. The cultures of normal human primary fibroblast were performed to investigate the effect of $\beta$-carotene on cytotoxicity as MTT assay and anti-wrinkle activity as collagen synthesis assays. $1.7{\mu}M$ of $\beta$-carotene was found to be optimal concentration at which 1.4-fold higher amount of collagen was synthesized than that in absence of $\beta$-carotene. This indicates that highly purified $\beta$-carotene can be obtained from recombinant E.coli by applying simple method with less toxic solvent and can be used in functional cosmetics as anti-wrinkle agent.

Studies on the Enzyme from Arthrobacter luteus Accelerating the Lysis of Yeast Cell Walls -II. Separation of the Factor Accelerating the Lysis of Yeast Cell Walls from the Preparation of Crude Zymolyase and Partial Purification of the Zymolyase with the Sephadex G-75 Gel- (Arthrobacter luteus가 생산(生産)하는 효모세포벽(酵母細胞壁) 용해촉진효소(溶解促進酵素)에 관(關)한 연구(硏究) -제 2 보(第2報) : Crude Zymolyase 표품중(標品中)으로부터 효모(酵母) 세포벽(細胞壁) 용해(溶解) 촉진(促進) 인자(因子)의 분리(分離) 및 Sephadex G-75 Gel에 의한 Zymolyase의 부분(部分) 정제(精製)-)

  • Oh, Hong-Rock;Shimoda, Tadahisa;Funatsu, Masaru
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.254-262
    • /
    • 1980
  • A series of experiment were carried out to separate the factor accelerating the lysis of cell wall of $Saccharomyces\;sak{\acute{e}}$ from the preparation of crude zymolyase obtained from Arthrobacter luteus. An attempt was also made to purify the enzyme which is essential for the study on the separation of the factor. The results are summarized as follows: 1. Crude zymolyase was fractionated 5 peaks $(A{\sim}E)$ containing three peaks $(A{\sim}C)$ passed through the column by the chromatography on Biogel CM-30. 2. Among the five peaks, peak E (protease fraction) was found to contain the factor accelerating the lytic activity of the zymolyase. 3. L-c fraction purified in almost free form from the nonlytic ${\beta}-1$, 3-glucanase, protease and inert protein by the affinity adsorption chromatography with Sephadex G-75 gel was obtained from zymolyase fraction (peak D). When it was subjected to polyacrylamide gel disc electrophoresis, only one clear protein band was observed at pH 4. 5, but still detected two or more band at pH 8. 3.

  • PDF

Present and prospect of plant metabolomics (식물대사체 연구의 현황과 전망)

  • Kim, Suk-Weon;Kwon, Yong-Kook;Kim, Jong-Hyun;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.12-24
    • /
    • 2010
  • Plant metabolomics is a research field for identifying all of the metabolites found in a certain plant cell, tissue, organ, or whole plant in a given time and conditions and for studying changes in metabolic profiling as time goes or conditions change. Metabolomics is one of the most recently developed omics for holistic approach to biology and is a kind of systems biology. Metabolomics or metabolite fingerprinting techniques usually involves collecting spectra of crude solvent extracts without purification and separation of pure compounds or not in standardized conditions. Therefore, that requires a high degree of reproducibility, which can be achieved by using a standardized method for sample preparation and data acquisition and analysis. In plant biology, metabolomics is applied for various research fields including rapid discrimination between plant species, cultivar and GM plants, metabolic evaluation of commercial food stocks and medicinal herbs, understanding various physiological, stress responses, and determination of gene functions. Recently, plant metabolomics is applied for characterization of gene function often in combination with transcriptomics by analyzing tagged mutants of the model plants of Arabidopsis and rice. The use of plant metabolomics combined by transcriptomics in functional genomics will be the challenge for the coming year. This review paper attempted to introduce current status and prospects of plant metabolomics research.

Improved Genomic DNA Isolation from Soil (토양으로부터 genomic DNA의 효과적인 분리)

  • Kang Ju-Hyung;Kim Bo-Hye;Lee Sun-Yi;Kim Yeong-Jin;Lee Ju-Won;Park Young Min;Ahn Soon-Cheol
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.851-856
    • /
    • 2005
  • Although valuable microbes have been isolated from the soil for the various productions of useful components, the microbes which can be cultivated in the laboratory are only $0.1-1\%$ of all microbes. To solve this problem, the study has recently been tried for making the valuable components from the environment by directly separating unculturable micrbial DNA in the soil. But it is known that humic acid originated from the soil interrupts various restriction enzymes and molecular biological process. Thus, in order to prevent these problems, this study modified the method separated soil DNA with phenol, CTAB and PEG. In order to compare the degree of purity for each DNA and the molecular biological application process, $A_{260}/A_{280}$ ratio, restriction enzymes, and PCR were performed. In case of DNA by the modified method, total yield of DNA was lower but $A_{260}/A_{280}$ ratio was higher than the previously reported methods. It was confirmed that the degree of purity is improved by the modified method. But it was not cut off by all kinds of tested restriction enzymes because of the operation of a very small amount of interrupting substances. When PCR was operated with each diluted DNA in different concentrations and GAPDH primer, the DNA by the modified method could be processed for PCR in the concentration of 100 times higher than by the previously reported separation method. Therefore, this experiment can find out the possibility of utilization for the unknown substances by effectively removing the harmful materials including humic acid and help establishing metagenomic DNA library from the soil DNA having the high degree of purity.

Recent Trends in The Production of Polyhydroxyalkanoates Using Marine Microorganisms (해양 미생물에 의한 폴리하이드록시알카노에이트 생산의 최근 동향)

  • Seon Min Kim;Hye In Lee;Hae Su Jeong;Young Jae Jeon
    • Journal of Life Science
    • /
    • v.33 no.8
    • /
    • pp.680-691
    • /
    • 2023
  • Peak oil, climate change, and microplastics caused by the production and usage of petroleum-based plastics have threatened the sustainability of our daily life, and this has emerged as a recent global issue. To solve this global issue, the production and usage of biodegradable eco-friendly bioplastics such as polyhydroxyalkanoates (PHAs) has been suggested as an alternative. Therefore, in this review, the present status of global PHA manufacturers, the advantages of the production of PHAs using marine-origin microorganisms (with their productivity potential) and further required research and development strategies for cost-competitive production of PHAs using marine-based microorganisms were investigated. In this review, PHAs produced from marine microorganisms were found to have similar physical properties to petroleum-based plastics but with several advantages that can reduce the costs of PHA production. Those advantages include, seawater used in the medium preparation step, and osmotic-based cell lysis technology used in the separation and purification steps. However, the PHA productivities from marine microorganisms showed somewhat lower efficiencies than those from the commercial strains isolated from terrestrial environments. In order to solve the problem, further research strategies using synthetic microbiology-based technology, the development of long-term continuous culture technology, and solutions to improve PHA efficiency are required to meet future market demands for alternative bioplastics.

Cytotoxic Effects of Tenebrio molitor Larval Extracts against Hepatocellular Carcinoma (갈색거저리 유충 추출물의 간암세포에 대한 세포독성 효능)

  • Lee, Ji-Eun;Lee, An-Jung;Jo, Da-Eun;Cho, Ju Hyeong;Youn, Kumju;Yun, Eun-Young;Hwang, Jae-Sam;Jun, Mira;Kang, Byoung Heon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.2
    • /
    • pp.200-207
    • /
    • 2015
  • Various natural products or their derivatives, mostly originating from plants, fungi, and bacteria, have been exploited as therapeutic drugs to treat various human diseases. In addition to previously explored organisms, research on natural compounds has now expanded into unexamined living organisms in order to identify novel bioactive substances. Here, we determined whether or not the larval form of the mealworm beetle Tenebrio molitor, a species of darkling beetle, contains cytotoxic substances that exclusively affect cancer cell viability. Ethanol extract and its solvent partitioned fractions, hexane and ethyl acetate fractions, showed anticancer effects against various human cancer cells derived from the prostate (PC3 and 22Rv1), cervix (HeLa), liver (PLC/PRF5, HepG2, Hep3B, and SK-HEP-1), colon (HCT116), lung (NCI-H460), breast (MDA-MB231), and ovary (SKOV3). Cell death induced by the fractions was a mix of apoptosis, necrosis, and autophagy. The hexane fraction was administered intraperitoneally to nude mice bearing a hepatocellular carcinoma SK-HEP-1 and showed inhibition of tumor growth in vivo. Therefore, we concluded that worm extracts contain cytotoxic substances, which can be enriched by proper fractionation protocols, and further separation and purification could lead to the identification of novel molecules to treat human cancers.

Detection of Campylobacter jejuni in food and poultry visors using immunomagnetic separation and microtitre hybridization

  • Simard, Ronald-E.
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.05a
    • /
    • pp.71-73
    • /
    • 2000
  • Campylobacter jejuni is most frequently identified cause of cause of acute diarrhoeal infections in developeed countries, exceeding rates of illness caused by both salmonella and shigilla(Skirrow, 1990 ; Lior 1994). Previous studies on campylobacter jejuni contamination of commercial broiler carcasses in u.s.(Stern, 1992). Most cases of the disease result from indirect transmission of Campylobactor from animals via milk, water and meat. In addition to Campylobactor jejuni. the closely relates species Campylobactor coli and Campylobactor lari have also been implicated as agents of gastroenteritis in humans. Campylobactor coli represented only approximately 3% of the Campylobactor isolates from patients with Campylobactor enteritis(Griffiths and Park, 1990) whereas Campylobactor coli is mainly isolated from pork(Lmmerding et al., 1988). Campylobactor jejuni has also been isolated from cases of bacteremia, appendicitis and, recently, has been associated with Guillai-Barre syndrome(Allos and Blaser, 1994; von Wulffen et al., 1994; Phillips, 1995). Studies in volunteers indicated that the infectious dose for Campylobactor jejuni is low(about 500 organisms)(Robinson, 1981). The methods traditionally used to detect Campylobactor ssp. in food require at least two days of incubation in an enrichment broth followed by plating and two days of incubation on complex culture media containing many antibiotics(Goossens and Butzler, 1992). Finnaly, several biochemical tests must be done to confirm the indentification at the species level. Therfore, sensitive and specific methods for the detection of small numbers of Campylobactor cells in food are needed. Polymerase chain reaction(PCR) assays targeting specific DNA sequences have been developed for the detection of Campylobactor(Giesendorf and Quint, 1995; Hemandex et al., 1995; Winter and Slavidk, 1995). In most cases, a short enrichment step is needed to enhance the sensitivity of the assay prior to detection by PCR as the number of bacteria in the food products is low in comparison with those found in dinical samples, and because the complex composition of food matrices can hinder the PCR and lower its sensitivity. However, these PCR systems are technically demanding to carry out and cumbersome when processing a large number of samples simutaneously. In this paper, an immunomagnetic method to concentrate Campylobactor cells present in food or clinical samples after an enrichment step is described. To detect specifically the thermophilic Campylobactor. a monoclonal antibody was adsorbed on the surface of the magnetic beads which react against a major porin of 45kDa present on the surface of the cells(Huyer et al., 1986). After this partial purification and concentration step, detection of bound cells was achieved using a simple, inexpensive microtitre plate-based hybridization system. We examined two alternative detection systems, one specific for thermophilic Campylobactor based on the detection of 23S rRNA using an immobilized DNA probe. The second system is less specific but more sensitive because of the high copy number of the rRNA present in bacterial cell($10^3-10^4$). By using specific immunomagnetic beads against thermophilic Campylobactor, it was possible to concentrate these cells from a heterogeneous media and obtain highly specific hybridization reactions with good sensitivity. There are several advantages in using microtitre plates instead of filter membranes or other matrices for hybridization techniques. Microtitre plates are much easier to handle than filter membranes during the adsorption, washing, hybridization and detection steps, and their use faciilitates the simultanuous analysis of multiple sample. Here we report on the use of a very simple detection procedure based on a monoclonal anti-RNA-DNA hybrid antibody(Fliss et al., 1999) for detection of the RNA-DNA hybrids formed in the wells.

  • PDF