• 제목/요약/키워드: Cell formation

검색결과 4,044건 처리시간 0.03초

The MicroRNA-551a/MEF2C Axis Regulates the Survival and Sphere Formation of Cancer Cells in Response to 5-Fluorouracil

  • Kang, Hoin;Kim, Chongtae;Ji, Eunbyul;Ahn, Sojin;Jung, Myeongwoo;Hong, Youlim;Kim, WooK;Lee, Eun Kyung
    • Molecules and Cells
    • /
    • 제42권2호
    • /
    • pp.175-182
    • /
    • 2019
  • microRNAs regulate a diverse spectrum of cancer biology, including tumorigenesis, metastasis, stemness, and drug resistance. To investigate miRNA-mediated regulation of drug resistance, we characterized the resistant cell lines to 5-fluorouracil by inducing stable expression of miRNAs using lenti-miRNA library. Here, we demonstrate miR-551a as a novel factor regulating cell survival after 5-FU treatment. miR-551a-expressing cells (Hep3B-lenti-miR-551a) were resistant to 5-FU-induced cell death, and after 5-FU treatment, and showed significant increases in cell viability, cell survival, and sphere formation. It was further shown that myocyte-specific factor 2C is the direct target of miR-551a. Our results suggest that miR-551a plays a novel function in regulating 5-FU-induced cell death, and targeting miR-551a might be helpful to sensitize cells to anti-cancer drugs.

혈관내피세포성장인자 억제제에 의한 구강편평상피세포암종 세포주의 성장 억제 효과 (ANTI-TUMOR EFFECTS OF VASCULAR ENDOTHELIAL GROWTH FACTOR INHIBITOR ON ORAL SQUAMOUS CELL CARCINOMA CELL LINES)

  • 한세진;이재훈
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제35권2호
    • /
    • pp.66-73
    • /
    • 2009
  • Tumor angiogenesis is a process leading to formation of blood vessels within tumors and is crucial for maintaining a supply of oxygen and nutrients to support tumor growth and metastasis. Vascular endothelial growth factor(VEGF) plays a key role in tumor angiogenesis including induction of endothelial cell proliferation, migration, survival and capillary tube formation. VEGF binds to two distinct receptors on endothelial cells. VEGFR-2 is considered to be the dominant signaling receptor for endothelial cell permeability, proliferation, and differentiation. Bevacizumab(Avastin, Genetech, USA) is a monoclonal antibody against vascular endothelial growth factor. It is used in the treatment of cancer, where it inhibits tumor growth by blocking the formation of new blood vessels. The goal of this study is to identify the anti-tumor effect of Bevacizumab(Avastin) for oral squamous cell carcinoma cell lines. Human squamous cell carcinoma cell line(HN4) was used in this study. We examined the sensitivity of HN4 cell line to Bevacizumab(Avastin) by using in vitro proliferation assays. The results were as follows. 1. In the result of MTT assay according to concentration of Bevacizumab(Avastin), antiproliferative effect for oral squamous cell carcinoma cell lines was observed. 2. The growth curve of cell line showed the gradual growth inhibition of oral squamous cell carcinoma cell lines after exposure of Bevacizumab(Avastin). 3. In the apoptotic index, groups inoculated Bevacizumab(Avastin) were higher than control groups. 4. In condition of serum starvation, VEGFR-2 did not show any detectable autophosphorylation, whereas the addition of VEGF activated the receptor. Suppression of phosphorylated VEGFR-2 and phosphorylated MAPK was observed following treatment with Bevacizumab(Avastin) in a dose-dependent manner. 5. In TEM view, dispersed nuclear membrane, scattered many cytoplasmic vacuoles and localized chromosomal margination after Bevacizumab(Avastin) treatment were observed. These findings suggest that Bevacizumab(Avastin) has the potential to inhibit MAPK pathway in proliferation of oral squamous cell carcinoma cell lines via inhibition of VEGF-dependent tumor growth.

FMS에서 기계셀과 부품그룹의 동시형성을 위한 통합모형 : 기계-공정 빈도행렬과 부품-공정 빈도행렬의 이용 (An Integrated Model for Simultaneous Formation of Machine Cells and Part Families in FMS : Using Machine- Operation Incidence Matrix and Part - Operation Incidence Matrix)

  • 정병희;윤창원
    • 경영과학
    • /
    • 제12권1호
    • /
    • pp.1-17
    • /
    • 1995
  • The success of cell manufacturing applications in FMS rests on the effective cell formation to maintain the independent relations both between machine cells and between part families. This paper presents an integrated method for concurrent formation of cells and families with no E.E (Exceptional Element) in FMS with alternative routings. To determine the maximum number of cell and family with no E.E, mathematical conditions and properties are derived. New concept of nonsimilarity is introduced for each machine and part based on machine-operation incidence matrix and part-operation incidence matrix. To concurrently form the cells and families, integer programming based mathematical models are developed. For the predetermined number of cell or family, model I is used to identify whether E.E exists or not. Model II forms cells and families considering only nonsimilarity. But model III can consider nonsimilarity and processing times. The proposed method is tested and proved by using numerical examples.

  • PDF

Biocompatible Formation of Silica/Titania Nanocomposite Shells on Living Chlorella Cells

  • 고은혜;윤연정;진승욱;황지민;이규남;양성호;최인성
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.553-553
    • /
    • 2012
  • The artificial shells of hard inorganic nanocomposites on individual cells would protect the cells physically and chemically, and control cell division. These emerging properties could be combined with cell-surface functionalizations for applications to cell-based sensors and assays as well as for fundamental studies on single-cell biology. In this work, individual Chlorella cells were encapsulated within a silica/titania nanocomposite shell in a biocompatible fashion that utilized a designed peptide, RKKRKKRKKRKKDDDDDDDD, as a catalytic template for formation of both $SiO_2$ and $TiO_2$ on the cell surface. The cell viability was maintained, and the division of the encapsulated Chlorella cells was controlled. The cell viability was enhanced compared with the $TiO_2$-shell formation. In addition, the incorporation of $TiO_2$ to the shell made it possible to anchor the ligands of interest to the shell via catechol chemistry. All in all, the combination of biological $SiO_2$ and abiolgical $TiO_2$ for the shell formation gave more tunability of the artificial shells compared with the $SiO_2$ or $TiO_2$ shells only.

  • PDF

제조셀 형성을 위한 가중치 유사성계수 방법 (A weighted similarity coefficient method for manufacturing cell formation)

  • 오수철;조규갑
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1995년도 춘계공동학술대회논문집; 전남대학교; 28-29 Apr. 1995
    • /
    • pp.122-129
    • /
    • 1995
  • This paper presents a similarity coefficient based approach to the problem of machine-part grouping for cellular manufacturing. The method uses relevant production data such as part type, production volume, routing sequence to make machine cells and part families for cell formation. A new similarity coefficient using weighted factors is introduced and an algorithm for formation of machine cells and part families is developed. A comparative study of two similarity coefficients - Gupta and seifoddini's method and proposed method - is conducted. A software program using TURBO C has been developed to verify the implementation.

  • PDF

제조셀 형성을 위한 가중치 유사성계수 방법 (A weighted similarity coefficient method for manufacturing cell formation)

  • 오수철;조규갑
    • 대한산업공학회지
    • /
    • 제22권1호
    • /
    • pp.141-154
    • /
    • 1996
  • This paper presents a similarity coefficient based approach to the problem of machine-part grouping for cellular manufacturing. The method uses relevant production data such as part type, production volume, routing sequence to make machine cells and part families for cell formation. A new similarity coefficient using weighted factors is introduced and an algorithm for formation of machine cells and part families is developed. A comparative study of two similarity coefficient methods, Gupta and Seifoddini's method and the proposed method, is conducted.

  • PDF

Polymer brush: a promising grafting approach to scaffolds for tissue engineering

  • Kim, Woonjung;Jung, Jongjin
    • BMB Reports
    • /
    • 제49권12호
    • /
    • pp.655-661
    • /
    • 2016
  • Polymer brush is a soft material unit tethered covalently on the surface of scaffolds. It can induce functional and structural modification of a substrate's properties. Such surface coating approach has attracted special attentions in the fields of stem cell biology, tissue engineering, and regenerative medicine due to facile fabrication, usability of various polymers, extracellular matrix (ECM)-like structural features, and in vivo stability. Here, we summarized polymer brush-based grafting approaches comparing self-assembled monolayer (SAM)-based coating method, in addition to physico-chemical characterization techniques for surfaces such as wettability, stiffness/elasticity, roughness, and chemical composition that can affect cell adhesion, differentiation, and proliferation. We also reviewed recent advancements in cell biological applications of polymer brushes by focusing on stem cell differentiation and 3D supports/implants for tissue formation. Understanding cell behaviors on polymer brushes in the scale of nanometer length can contribute to systematic understandings of cellular responses at the interface of polymers and scaffolds and their simultaneous effects on cell behaviors for promising platform designs.

Effects of Various Addition and Exclusion Time of Glucose on Development of Mouse Two-Cell Embryos

  • Park S. B.;Park K S.;Lee T. H.;Chun S. S.;Kim K S.;Song H. B.
    • Reproductive and Developmental Biology
    • /
    • 제28권4호
    • /
    • pp.227-233
    • /
    • 2004
  • This study was conducted to investigate the effect of various addition and exclusion time of glucose (Control: no addition, A: 24~72 h, B: 24~48 h, C: 48~72 h, D: 0~72 h, E: 0~48 h, F: 0~24 h and 48~72 h, G: 0~24 h) on embryonic developmental capacity of 2-cell embryos in mice. Developed blastocysts were assessed for mean cell number by differential staining. The zona-intact blastocyst (ZiB) rates were higher (p<0.05) in group B than control. However, the zona-escape blastocyst (ZeB) rates were not significantly different in all groups. At 72 h, total blastocyst (ZiB + ZeB) formation rates were not significantly different in all groups. The mean cell number was not significantly different among all groups. The inner cell mass (ICM) cell number was higher (p<0.05) in group F than control, group A, B and G. The trophectoderm (TE) cell number was higher (p<0.05) in control than group A and D. The %ICM was higher (p<0.05) in group C, D and F than control. The ICM : TE ratio was not significantly different in all groups. Between control and glucose group, no significant difference was observed in the total blastocysts (ZiB + ZeB) formation rates. Also, no significant difference was observed in the mean cell number, ICM cell number and ICM : TE ratio. However the TE cell number was higher (p<0.05) in control than glucose group and %ICM was higher (p<0.05) in glucose group than control. In conclusion, glucose added in culture medium was not inhibitory on blastocyst formation but glucose added for 48 ~72 h in culture medium increases %ICM of blastocysts in mice.

Collaborative Sub-channel Allocation with Power Control in Small Cell Networks

  • Yang, Guang;Cao, Yewen;Wang, Deqiang;Xu, Jian;Wu, Changlei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권2호
    • /
    • pp.611-627
    • /
    • 2017
  • For enhancing the coverage of wireless networks and increasing the spectrum efficiency, small cell networks (SCNs) are considered to be one of the most prospective schemes. Most of the existing literature on resource allocation among non-cooperative small cell base stations (SBSs) has widely drawn close attention and there are only a small number of the cooperative ideas in SCNs. Based on the motivation, we further investigate the cooperative approach, which is formulated as a coalition formation game with power control algorithm (CFG-PC). First, we formulate the downlink sub-channel resource allocation problem in an SCN as a coalition formation game. Pareto order and utilitarian order are applied to form coalitions respectively. Second, to achieve more availability and efficiency power assignment, we expand and solve the power control using particle swarm optimization (PSO). Finally, with our proposed algorithm, each SBS can cooperatively work and eventually converge to a stable SBS partition. As far as the transmit rate of per SBS and the system rate are concerned respectively, simulation results indicate that our proposed CFG-PC has a significant advantage, relative to a classical coalition formation algorithm and the non-cooperative case.

MC3T3-E1 세포의 분화에 PDGF-BB와 Dexamethasone 병용 효과 (The Effects of Combination of PDGF-BB and Dexamethasone on Differentiation of MC3T3-E1 Cells)

  • 이재목;서조영;김성조;최점일
    • Journal of Periodontal and Implant Science
    • /
    • 제30권1호
    • /
    • pp.27-39
    • /
    • 2000
  • To evaluate the effects of Dexamethasone(Dex), Platelet derived growth factor-BB(PDGF) and combination of Dex and PDGF(DP) on the growth and differentiation of MC3T3-E1 cells, Dex($10^{-7}\;M$) and PDGF(10 ng/ml) in experimental group were added to the cells at the days 5, 10, 15, 20, 25 and examined for cell proliferation activities, DNA synthesis activities, ALP activities and bone nodule formation. The results were as follows : 1. In Dex group, cell proliferation, DNA synthesis and ALP activities were lower until 15 days when compared to the control group. Bone nodules formation were shown at 10 days. 2. In PDGF group, cell proliferation and DNA synthesis activities were higher until 15 days and ALP activities were lower when compared to the control and Dex groups. Bone nodules formation were shown at 20 days. 3. In DP group, cell proliferation and DNA synthesis activities of PDGF were suppressed by Dex and synergistic effects of combination of Dex and PDGF on ALP activities were shown at days 5 when compared to control and Dex groups. Bone nodules formation activities of Dex were suppressed by PDGF.

  • PDF