Browse > Article
http://dx.doi.org/10.14348/molcells.2018.0288

The MicroRNA-551a/MEF2C Axis Regulates the Survival and Sphere Formation of Cancer Cells in Response to 5-Fluorouracil  

Kang, Hoin (Department of Biochemistry, The Catholic University of Korea College of Medicine)
Kim, Chongtae (Department of Biochemistry, The Catholic University of Korea College of Medicine)
Ji, Eunbyul (Department of Biochemistry, The Catholic University of Korea College of Medicine)
Ahn, Sojin (Department of Biochemistry, The Catholic University of Korea College of Medicine)
Jung, Myeongwoo (Department of Biochemistry, The Catholic University of Korea College of Medicine)
Hong, Youlim (Department of Biochemistry, The Catholic University of Korea College of Medicine)
Kim, WooK (Department of Molecular Science and Technology, Ajou University)
Lee, Eun Kyung (Department of Biochemistry, The Catholic University of Korea College of Medicine)
Abstract
microRNAs regulate a diverse spectrum of cancer biology, including tumorigenesis, metastasis, stemness, and drug resistance. To investigate miRNA-mediated regulation of drug resistance, we characterized the resistant cell lines to 5-fluorouracil by inducing stable expression of miRNAs using lenti-miRNA library. Here, we demonstrate miR-551a as a novel factor regulating cell survival after 5-FU treatment. miR-551a-expressing cells (Hep3B-lenti-miR-551a) were resistant to 5-FU-induced cell death, and after 5-FU treatment, and showed significant increases in cell viability, cell survival, and sphere formation. It was further shown that myocyte-specific factor 2C is the direct target of miR-551a. Our results suggest that miR-551a plays a novel function in regulating 5-FU-induced cell death, and targeting miR-551a might be helpful to sensitize cells to anti-cancer drugs.
Keywords
anti-cancer drug resistance; cell survival; hepatocellular carcinoma; microRNA; sphere formation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Du, Z., and Sha, X. (2017). Demethoxycurcumin inhibited human epithelia ovarian cancer cells' growth via up-regulating miR-551a. Tumour Biol. 39, 1010428317694302.
2 Facompre, N., Nakagawa, H., Herlyn, M., and Basu, D. (2012). Stemlike cells and therapy resistance in squamous cell carcinomas. Adv. Pharmacol. 65, 235-265.   DOI
3 Fojo, T. (2007). Multiple paths to a drug resistance phenotype: mutations, translocations, deletions and amplification of coding genes or promoter regions, epigenetic changes and microRNAs. Drug Resist. Updat. 10, 59-67.   DOI
4 Fujii, H., Honoki, K., Tsujiuchi, T., Kido, A., Yoshitani, K., and Takakura, Y. (2009). Sphere-forming stem-like cell populations with drug resistance in human sarcoma cell lines. Int. J. Oncol. 34, 1381-1386.
5 Gottesman, M.M. (2002). Mechanisms of cancer drug resistance. Annu. Rev. Med. 53, 615-627.   DOI
6 Hasan, S., Taha, R., and Omri, H.E. (2018). Current opinions on chemoresistance: an overview. Bioinformation 14, 80-85.   DOI
7 Hasegawa, S., Eguchi, H., Nagano, H., Konno, M., Tomimaru, Y., Wada, H., Hama, N., Kawamoto, K., Kobayashi, S., Nishida, N., et al. (2014). MicroRNA-1246 expression associated with CCNG2-mediated chemoresistance and stemness in pancreatic cancer. Br. J. Cancer 111, 1572-1580.   DOI
8 Hayes, J., Peruzzi, P.P., and Lawler, S. (2014). MicroRNAs in cancer: biomarkers, functions and therapy. Trends. Mol. Med. 20, 460-469.   DOI
9 He, L., and Hannon, G.J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522-531.   DOI
10 Housman, G., Byler, S., Heerboth, S., Lapinska, K., Longacre, M., Snyder, N., and Sarkar, S. (2014). Drug resistance in cancer: an overview. Cancers (Basel) 6, 1769-1792.   DOI
11 Kim, C., Hong, Y., Lee, H., Kang, H., and Lee, E.K. (2018). MicroRNA-195 desensitizes HCT116 human colon cancer cells to 5-fluorouracil. Cancer Lett. 412, 264-271.   DOI
12 Ignatius, M.S., Hayes, M.N., Lobbardi, R., Chen, E.Y., McCarthy, K.M., Sreenivas, P., Motala, Z., Durbin, A.D., Molodtsov, A., Reeder, S., et al. (2017). The NOTCH1/SNAIL1/MEF2C Pathway Regulates Growth and Self-Renewal in Embryonal Rhabdomyosarcoma. Cell Rep. 19, 2304-2318.   DOI
13 Jansson, M.D., and Lund, A.H. (2012). MicroRNA and cancer. Mol. Oncol. 6, 590-610.   DOI
14 Jeon, H.M., Sohn, Y.W., Oh, S.Y., Kim, S.H., Beck, S., Kim, S., and Kim, H. (2011). ID4 imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2. Cancer Res. 71, 3410-3421.   DOI
15 Lee, C.H., Yu, C.C., Wang, B.Y., and Chang, W.W. (2016). Tumorsphere as an effective in vitro platform for screening anticancer stem cell drugs. Oncotarget 7, 1215-1226.   DOI
16 Ambros, V. (2004). The functions of animal microRNAs. Nature 431, 350-355.   DOI
17 Lee, H., Kim, C., Kang, H., Tak, H., Ahn, S., Yoon, S.K., Kuh, H.J., Kim, W., and Lee, E.K. (2017). microRNA-200a-3p increases 5-fluorouracil resistance by regulating dual specificity phosphatase 6 expression. Exp. Mol. Med. 49, e327.   DOI
18 Li, H., Radford, J.C., Ragusa, M.J., Shea, K.L., McKercher, S.R., Zaremba, J.D., Soussou, W., Nie, Z., Kang, Y.J., Nakanishi, N., et al. (2008). Transcription factor MEF2C influences neural stem/progenitor cell differentiation and maturation in vivo. Proc. Natl. Acad. Sci. USA 105, 9397-9402.   DOI
19 Li, Z., Cao, Y., Jie, Z., Liu, Y., Li, Y., Li, J., Zhu, G., Liu, Z., Tu, Y., Peng, G., et al. (2012). miR-495 and miR-551a inhibit the migration and invasion of human gastric cancer cells by directly interacting with PRL-3. Cancer Lett. 323, 41-47.   DOI
20 Abad, M., Hashimoto, H., Zhou, H., Morales, M.G., Chen, B., Bassel-Duby, R., and Olson, E.N. (2017). Notch inhibition enhances cardiac reprogramming by increasing MEF2C transcriptional activity. Stem Cell Rep. 8, 548-560.   DOI
21 An, X., Sarmiento, C., Tan, T., and Zhu, H. (2017). Regulation of multidrug resistance by microRNAs in anti-cancer therapy. Acta. Pharm. Sin. B 7, 38-51.   DOI
22 Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297.   DOI
23 Caliskan, M., Guler, H., and Bozok Cetintas, V. (2017). Current updates on microRNAs as regulators of chemoresistance. Biomed. Pharmacother 95, 1000-1012.   DOI
24 Cao, L., Zhou, Y., Zhai, B., Liao, J., Xu, W., Zhang, R., Li, J., Zhang, Y., Chen, L., Qian, H., et al. (2011). Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC Gastroenterol. 11, 71.   DOI
25 Rocha, H., Sampaio, M., Rocha, R., Fernandes, S., and Leao, M. (2016). MEF2C haploinsufficiency syndrome: Report of a new MEF2C mutation and review. Eur. J. Med. Genet. 59, 478-482.   DOI
26 Ling, X., Yao, D., Kang, L., Zhou, J., Zhou, Y., Dong, H., Zhang, K., Zhang, L., and Chen, H. (2017). Involment of RAS/ERK1/2 signaling and MEF2C in miR-155-3p inhibition-triggered cardiomyocyte differentiation of embryonic stem cell. Oncotarget 8, 84403-84416.   DOI
27 Loo, J.M., Scherl, A., Nguyen, A., Man, F.Y., Weinberg, E., Zeng, Z., Saltz, L., Paty, P.B., and Tavazoie, S.F. (2015). Extracellular metabolic energetics can promote cancer progression. Cell 160, 393-406.   DOI
28 McDermott, A.M., Heneghan, H.M., Miller, N., and Kerin, M.J. (2011). The therapeutic potential of microRNAs: disease modulators and drug targets. Pharm. Res. 28, 3016-3029.   DOI
29 Park, E.Y., Chang, E., Lee, E.J., Lee, H.W., Kang, H.G., Chun, K.H., Woo, Y.M., Kong, H.K., Ko, J.Y., Suzuki, H., et al. (2014). Targeting of miR34a-NOTCH1 axis reduced breast cancer stemness and chemoresistance. Cancer Res. 74, 7573-7582.   DOI
30 Prieto-Vila, M., Takahashi, R.U., Usuba, W., Kohama, I., and Ochiya, T. (2017). Drug resistance driven by cancer stem cells and their niche. Int. J. Mol. Sci. 18. 2574.   DOI
31 Sahoo, S., Meijles, D.N., Al Ghouleh, I., Tandon, M., Cifuentes-Pagano, E., Sembrat, J., Rojas, M., Goncharova, E., and Pagano, P.J. (2016). MEF2C-MYOCD and leiomodin1 suppression by miRNA-214 promotes smooth muscle cell phenotype switching in pulmonary arterial hypertension. PLoS One 11, e0153780.   DOI
32 Tung, S.L., Huang, W.C., Hsu, F.C., Yang, Z.P., Jang, T.H., Chang, J.W., Chuang, C.M., Lai, C.R., and Wang, L.H. (2017). miRNA-34c-5p inhibits amphiregulin-induced ovarian cancer stemness and drug resistance via downregulation of the AREG-EGFR-ERK pathway. Oncogenesis 6, e326.   DOI
33 Cioce, M., Gherardi, S., Viglietto, G., Strano, S., Blandino, G., Muti, P., and Ciliberto, G. (2010). Mammosphere-forming cells from breast cancer cell lines as a tool for the identification of CSC-like- and early progenitor-targeting drugs. Cell Cycle 9, 2878-2887.   DOI
34 Van Roosbroeck, K., and Calin, G.A. (2017). Cancer hallmarks and MicroRNAs: the therapeutic connection. Adv. Cancer Res. 135, 119-149.   DOI
35 Chen, S.F., Chang, Y.C., Nieh, S., Liu, C.L., Yang, C.Y., and Lin, Y.S. (2012). Nonadhesive culture system as a model of rapid sphere formation with cancer stem cell properties. PLoS One 7, e31864.   DOI
36 Cheng, X., Du, J., Shen, L., Tan, Z., Jiang, D., Jiang, A., Li, Q., Tang, G., Jiang, Y., Wang, J., et al. (2018). MiR-204-5p regulates C2C12 myoblast differentiation by targeting MEF2C and ERRgamma. Biomed. Pharmacother 101, 528-535.   DOI
37 Chinchilla, A., Lozano, E., Daimi, H., Esteban, F.J., Crist, C., Aranega, A.E., and Franco, D. (2011). MicroRNA profiling during mouse ventricular maturation: a role for miR-27 modulating Mef2c expression. Cardiovasc. Res. 89, 98-108.   DOI
38 Cho, E.G., Zaremba, J.D., McKercher, S.R., Talantova, M., Tu, S., Masliah, E., Chan, S.F., Nakanishi, N., Terskikh, A., and Lipton, S.A. (2011). MEF2C enhances dopaminergic neuron differentiation of human embryonic stem cells in a parkinsonian rat model. PLoS One 6, e24027.   DOI
39 Cree, I.A., and Charlton, P. (2017). Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer 17, 10.   DOI
40 Deng, Y., Zhu, G., Luo, H., and Zhao, S. (2016). MicroRNA-203 As a Stemness Inhibitor of Glioblastoma Stem Cells. Mol. Cells 39, 619-624.   DOI
41 Dieter, S.M., Ball, C.R., Hoffmann, C.M., Nowrouzi, A., Herbst, F., Zavidij, O., Abel, U., Arens, A., Weichert, W., Brand, K., et al. (2011). Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell 9, 357-365.   DOI
42 Xu, Z., Han, Y., Liu, J., Jiang, F., Hu, H., Wang, Y., Liu, Q., Gong, Y., and Li, X. (2015). MiR-135b-5p and MiR-499a-3p promote cell proliferation and migration in atherosclerosis by directly targeting MEF2C. Sci. Rep. 5, 12276.   DOI
43 Wang, J., Yang, M., Li, Y., and Han, B. (2015). The role of MicroRNAs in the chemoresistance of breast cancer. Drug Dev. Res. 76, 368-374.   DOI
44 Wang, W., Li, Y., Liu, N., Gao, Y., and Li, L. (2017). MiR-23b controls ALDH1A1 expression in cervical cancer stem cells. BMC Cancer 17, 292.   DOI
45 Wang, W., Org, T., Montel-Hagen, A., Pioli, P.D., Duan, D., Israely, E., Malkin, D., Su, T., Flach, J., Kurdistani, S.K., et al. (2016). MEF2C protects bone marrow B-lymphoid progenitors during stress haematopoiesis. Nat. Commun. 7, 12376.   DOI
46 Yelamanchili, S.V., Chaudhuri, A.D., Chen, L.N., Xiong, H., and Fox, H.S. (2010). MicroRNA-21 dysregulates the expression of MEF2C in neurons in monkey and human SIV/HIV neurological disease. Cell Death Dis. 1, e77.   DOI
47 Zhang, H., Liu, W., Wang, Z., Meng, L., Wang, Y., Yan, H., and Li, L. (2018). MEF2C promotes gefitinib resistance in hepatic cancer cells through regulating MIG6 transcription. Tumori, 300891618765555.
48 Zhang, R., Sui, L., Hong, X., Yang, M., and Li, W. (2017). MiR-448 promotes vascular smooth muscle cell proliferation and migration in through directly targeting MEF2C. Environ. Sci. Pollut. Res. Int. 24, 22294-22300.   DOI