• 제목/요약/키워드: Cell fate decision

검색결과 11건 처리시간 0.023초

The role of microRNAs in cell fate determination of mesenchymal stem cells : balancing adipogenesis and osteogenesis

  • Kang, Hara;Hata, Akiko
    • BMB Reports
    • /
    • 제48권6호
    • /
    • pp.319-323
    • /
    • 2015
  • Mesenchymal stem cells (MSCs) are multipotent stem cells capable of differentiating into adipocytes, osteoblasts, or chondrocytes. A mutually inhibitory relationship exists between osteogenic and adipogenic lineage commitment and differentiation. Such cell fate decision is regulated by several signaling pathways, including Wnt and bone morphogenetic protein (BMP). Accumulating evidence indicates that microRNAs (miRNAs) act as switches for MSCs to differentiate into either osteogenic or adipogenic lineage. Different miRNAs have been reported to regulate a master transcription factor for osteogenesis, such as Runx2, as well as molecules in the Wnt or BMP signaling pathway, and control the balance between osteoblast and adipocyte differentiation. Here, we discuss recent advancement of the cell fate decision of MSCs by miRNAs and their targets. [BMB Reports 2015; 48(6): 319-323]

Molecular Mechanisms of T Helper Cell Differentiation and Functional Specialization

  • Gap Ryol Lee
    • IMMUNE NETWORK
    • /
    • 제23권1호
    • /
    • pp.4.1-4.15
    • /
    • 2023
  • Th cells, which orchestrate immune responses to various pathogens, differentiate from naive CD4 T cells into several subsets that stimulate and regulate immune responses against various types of pathogens, as well as a variety of immune-related diseases. Decades of research have revealed that the fate decision processes are controlled by cytokines, cytokine receptor signaling, and master transcription factors that drive the differentiation programs. Since the Th1 and Th2 paradigm was proposed, many subsets have been added to the list. In this review, I will summarize these events, including the fate decision processes, subset functions, transcriptional regulation, metabolic regulation, and plasticity and heterogeneity. I will also introduce current topics of interest.

Involvement of RUNX and BRD Family Members in Restriction Point

  • Lee, Jung-Won;Park, Tae-Geun;Bae, Suk-Chul
    • Molecules and Cells
    • /
    • 제42권12호
    • /
    • pp.836-839
    • /
    • 2019
  • A tumor is an abnormal mass of tissue that arises when cells divide more than they should or do not die when they should. The cellular decision regarding whether to undergo division or death is made at the restriction (R)-point. Consistent with this, an increasingly large body of evidence indicates that deregulation of the R-point decision-making machinery accompanies the formation of most tumors. Although the R-point decision is literally a matter of life and death for the cell, and thus critical for the health of the organism, it remains unclear how a cell chooses its own fate. Recent work demonstrated that the R-point constitutes a novel oncogene surveillance mechanism operated by R-point-associated complexes of which RUNX3 and BRD2 are the core factors (Rpa-RX3 complexes). Here, we show that not only RUNX3 and BRD2, but also other members of the RUNX and BRD families (RUNX1, RUNX2, BRD3, and BRD4), are involved in R-point regulation.

Drosophila blood as a model system for stress sensing mechanisms

  • Shim, Jiwon
    • BMB Reports
    • /
    • 제48권4호
    • /
    • pp.223-228
    • /
    • 2015
  • The Drosophila lymph gland is the hematopoietic organ in which stem-like progenitors proliferate and give rise to myeloid-type blood cells. Mechanisms involved in Drosophila hematopoiesis are well established and known to be conserved in the vertebrate system. Recent studies in Drosophila lymph gland have provided novel insights into how external and internal stresses integrate into blood progenitor maintenance mechanisms and the control of blood cell fate decision. In this review, I will introduce a developmental overview of the Drosophila hematopoietic system, and recent understandings of how the system uses developmental signals not only for hematopoiesis but also as sensors for stress and environmental changes to elicit necessary blood responses. [BMB Reports 2015; 48(4): 223-228]

A Single Cell Multimedia Fate Model for Endocrine Disrupting Chemicals

  • Park, Kyunghee;Junheon Youn;Daeil Kang;Lee, Choong;Lee, Dongsoo;Jaeryoung Oh;Sunghwan Jeon;Jingyun Na
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2003년도 춘계학술대회
    • /
    • pp.149-149
    • /
    • 2003
  • To understand environmental paths of the transport and accumulation of endocrine disrupting chemicals (EDCs), a single cell multimedia fate model has been constructed and evaluated. The EDCs of concern were PAHs, Organochlorine Pesticides (OCPs), PCBs, Alkyl phenols, and phthalates. An evaluation model was designed for the multimedia distribution, including air, water, soil, sediment and vegetation. This model was verified using reported values and via monitoring data. Based on collected data, the distribution trends of EDCs with respect to environmental media were analyzed. Those results have applied to the model for the prediction of the spatial and temporal distribution of EDCs in Seoul. Especially, phenol compound, phthalates, PAHs, PCBs and organochlorine pesticides were estimated and the model was verified. This model was successfully conducted to environmental media, such as air (vapor and suspended particles), soils (forest soil, bare soil, and cement-concrete covered soil), water (dissolved and suspended solids), sediment, trees (deciduous and coniferous). The discrepancies between the model prediction and the measured data are approximately within or near a factor of 10 for the PAHs of three rings through that of six rings, implying that multimedia distribution of the PAHs could be predicted with a factor of 10. Concerning about the air equilibrium may be assumed, a fugacity at steady state is similar in all environmental media. Considering the uncertainties of this model, the use of equilibrium models may be sufficient for assessing chemical fates. In this study, a suggestion was made that modeling and estimation of chemicals in environmental multimedia be rigorously evaluated using the measured flux data. In addition, these data should be obtained, for example, from the precise and standardized inventory of the target chemicals. The model (EDC Seoul) will be refined in an on-going research effort and will be used to support decision-making concerning the management of EDCs.

  • PDF

Notch Is Not Involved in Physioxia-Mediated Stem Cell Maintenance in Midbrain Neural Stem Cells

  • Anne Herrmann;Anne K. Meyer;Lena Braunschweig;Lisa Wagenfuehr;Franz Markert;Deborah Kolitsch;Vladimir Vukicevic;Christiane Hartmann;Marlen Siebert;Monika Ehrhart-Bornstein;Andreas Hermann;Alexander Storch
    • International Journal of Stem Cells
    • /
    • 제16권3호
    • /
    • pp.293-303
    • /
    • 2023
  • Background and Objectives: The physiological oxygen tension in fetal brains (~3%, physioxia) is beneficial for the maintenance of neural stem cells (NSCs). Sensitivity to oxygen varies between NSCs from different fetal brain regions, with midbrain NSCs showing selective susceptibility. Data on Hif-1𝛼/Notch regulatory interactions as well as our observations that Hif-1𝛼 and oxygen affect midbrain NSCs survival and proliferation prompted our investigations on involvement of Notch signalling in physioxia-dependent midbrain NSCs performance. Methods and Results: Here we found that physioxia (3% O2) compared to normoxia (21% O2) increased proliferation, maintained stemness by suppression of spontaneous differentiation and supported cell cycle progression. Microarray and qRT-PCR analyses identified significant changes of Notch related genes in midbrain NSCs after long-term (13 days), but not after short-term physioxia (48 hours). Consistently, inhibition of Notch signalling with DAPT increased, but its stimulation with Dll4 decreased spontaneous differentiation into neurons solely under normoxic but not under physioxic conditions. Conclusions: Notch signalling does not influence the fate decision of midbrain NSCs cultured in vitro in physioxia, where other factors like Hif-1𝛼 might be involved. Our findings on how physioxia effects in midbrain NSCs are transduced by alternative signalling might, at least in part, explain their selective susceptibility to oxygen.

Dose-dependent UV Stabilization of p53 in Cultured Human Cells Undergoing Apoptosis Is Mediated by Poly(ADP-ribosyl)ation

  • Won, Jungyeon;Chung, So Young;Kim, Seung Beom;Byun, Boo Hyeong;Yoon, Yoo Sik;Joe, Cheol O.
    • Molecules and Cells
    • /
    • 제21권2호
    • /
    • pp.218-223
    • /
    • 2006
  • The effect of poly(ADP-ribosyl)ation on the stability of p53 in SK-HEP1 cells treated with UV light was examined. Intracellular levels of p53 increased in cells treated with a low dose of UV light ($20J/m^2$), whereas they increased but then declined after a higher dose of UV ($100J/m^2$). Intracellular levels of p53 in the UV treated SK-HEP1 cells were dependent on the UV dose. Use of proteasome inhibitors revealed that p53 is degraded by proteasomal proteolysis after high doses of UV light. We present evidence that, at low doses, poly(ADP-ribose)polymerase (PARP) poly(ADP-ribosyl) ates p53 and protects it from proteasomal degradation before caspase-3 is activated, whereas at high doses the cells undergo UV induced apoptosis and PARP is cleaved by caspase-3 before it can protect p53 from degradation. Destabilization of p53 by cleavage of PARP may be important in cell fate decision favoring apoptosis.

Glyceraldehyde-3-Phosphate, a Glycolytic Intermediate, Prevents Cells from Apoptosis by Lowering S-Nitrosylation of Glyceraldehyde-3-Phosphate Dehydrogenase

  • Lee, Sun-Young;Kim, Jeong-Hoon;Jung, Hye-Yun;Chi, Seung-Wook;Chung, Sang-J.;Lee, Chong-Kil;Park, Byoung-Chul;Bae, Kwang-Hee;Park, Sung-Goo
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권4호
    • /
    • pp.571-573
    • /
    • 2012
  • Glyceraldehyde-3-phosphate (G-3-P), the substrate of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), is a key intermediate in several metabolic pathways. Recently, we reported that G-3-P directly inhibits caspase-3 activity in a reversible noncompetitive mode, suggesting the intracellular G-3-P level as a cell fate decision factor. It has been known that apoptotic stimuli induce the generation of NO, and NO S-nitrosylates GAPDH at the catalytic cysteine residue, which confers GAPDH the ability to bind to Siah-1, an E3 ubiquitin ligase. The GAPDH-Siah-1 complex is translocated into the nucleus and subsequently triggers the apoptotic process. Here, we clearly showed that intracellular G-3-P protects GAPDH from S-nitrosylation at above a certain level, and consequently maintains the cell survival. In case G-3-P drops below a certain level as a result of exposure to specific stimuli, G-3-P cannot inhibit S-nitrosylation of GAPDH anymore, and consequently GAPDH translocates with Siah-1 into the nucleus. Based on these results, we suggest that G-3-P functions as a molecule switch between cell survival and apoptosis by regulating S-nitrosylation of GAPDH.

두 개의 다른 마우스 배아줄기세포의 차별적인 조혈세포 분화능 (Different Potential of Hematopoietic Differentiation in Two Distinct Mouse Embryonic Stem Cells)

  • 김진숙;강호범;송지연;오구택;남기환;이영희
    • 한국발생생물학회지:발생과생식
    • /
    • 제9권2호
    • /
    • pp.105-114
    • /
    • 2005
  • 배아 줄기세포는 세포 치료 목적을 위한 재료로써 매우 큰 잠재력을 가지고 있으며, 이러한 잠재력의 실현을 위해서 세포의 운명에 결정적인 역할을 하는 요소들을 확인하고 특정 세포의 대량 생산을 위한 방법을 개발하여야 한다. 조혈과정은 폭넓게 연구되어 왔으며, 배아 줄기세포로부터 조혈세포의 분화는 lineage commitment에 관한 연구에 좋은 모델이 된다. 본 연구에서는, 두 종류의 마우스 배아 줄기세포주 TC-1과 B6-1를 이용하여 그 특성과 조혈세포 분화능을 비교하여 보았다. 두 세포주는 작은 차이는 있으나 줄기세포로서의 특성을 공통적으로 가지고 있었다. 그러나 methylcellulose 배양 system을 사용하여 embryonic body 형성능을 확인한 결과 TC-1이 B6-1에 비해 월등함을 확인하였다. 조혈세포 분화의 추적을 위해 blast colony의 형성, progenitor assay, RT-PCR을 통한 조혈세포 분화 관련 marker의 발현 분석을 수행한 결과, TC-1은 정상적으로 조혈세포를 생성해 내지만, B6-1은 제대로 분화되지 못함을 확인할 수 있었다. 이러한 결과들은 in vitro에서 배아 줄기세포로부터 조혈세포로 분화를 유도할 때, 보다 적합한 세포주의 탐색이 요구됨을 제시하며 이는 향후 인간 배아 줄기세포주에서도 마찬가지로 적용될 수 있음을 암시한다고 사료된다.

  • PDF

Geft is dispensable for the development of the second heart field

  • Fan, Xiongwei;Hou, Ning;Fan, Kaiji;Yuan, Jiajia;Mo, Xiaoyang;Deng, Yun;Wan, Yongqi;Teng, Yan;Yang, Xiao;Wu, Xiushan
    • BMB Reports
    • /
    • 제45권3호
    • /
    • pp.153-158
    • /
    • 2012
  • Geft is a guanine nucleotide exchange factor, which can specifically activate Rho family of small GTPase by catalyzing the exchange of bound GDP for GTP. Geft is highly expressed in the excitable tissue as heart and skeletal muscle and plays important roles in many cellular processes, such as cell proliferation, migration, and cell fate decision. However, the in vivo role of Geft remains unknown. Here, we generated a Geft conditional knockout mouse by flanking exons 5-17 of Geft with loxP sites. Cre-mediated deletion of the Geft gene in heart using Mef2c-Cre transgenic mice resulted in a dramatic decrease of Geft expression. Geft knockout mice develop normally and exhibit no discernable phenotype, suggesting Geft is dispensable for the development of the second heart field in mouse. The Geft conditional knockout mouse will be a valuable genetic tool for uncovering the in vivo roles of Geft during development and in adult homeostasis.