Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.3.153

Geft is dispensable for the development of the second heart field  

Fan, Xiongwei (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University)
Hou, Ning (State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology)
Fan, Kaiji (State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology)
Yuan, Jiajia (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University)
Mo, Xiaoyang (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University)
Deng, Yun (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University)
Wan, Yongqi (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University)
Teng, Yan (State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology)
Yang, Xiao (State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology)
Wu, Xiushan (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University)
Publication Information
BMB Reports / v.45, no.3, 2012 , pp. 153-158 More about this Journal
Abstract
Geft is a guanine nucleotide exchange factor, which can specifically activate Rho family of small GTPase by catalyzing the exchange of bound GDP for GTP. Geft is highly expressed in the excitable tissue as heart and skeletal muscle and plays important roles in many cellular processes, such as cell proliferation, migration, and cell fate decision. However, the in vivo role of Geft remains unknown. Here, we generated a Geft conditional knockout mouse by flanking exons 5-17 of Geft with loxP sites. Cre-mediated deletion of the Geft gene in heart using Mef2c-Cre transgenic mice resulted in a dramatic decrease of Geft expression. Geft knockout mice develop normally and exhibit no discernable phenotype, suggesting Geft is dispensable for the development of the second heart field in mouse. The Geft conditional knockout mouse will be a valuable genetic tool for uncovering the in vivo roles of Geft during development and in adult homeostasis.
Keywords
Conditional allele; Cre-loxP; FLPe-Frt; Geft; Heart development;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sussman, M. A., Welch, S., Walker, A., Klevitsky, R., Hewett, T. E., Price, R. L., Schaefer, E. and Yager, K. (2000) Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active rac1. J. Clin. Invest. 105, 875-886.   DOI   ScienceOn
2 Raeker, M. O., Bieniek, A. N., Ryan, A. S., Tsai, H. J., Zahn, K. M. and Russell, M. W. (2010) Targeted deletion of the zebrafish obscurin A RhoGEF domain affects heart, skeletal muscle and brain development. Dev. Biol. 337, 432-443.   DOI   ScienceOn
3 Mayers, C. M., Wadell, J., McLean, K., Venere, M., Malik, M., Shibata, T., Driggers, P. H., Kino, T., Guo, X. C., Koide, H., Gorivodsky, M., Grinberg, A., Mukhopadhyay, M., Abu-Asab, M., Westphal, H. and Segars, J. H. (2010) The Rho guanine nucleotide exchange factor AKAP13 (BRX) is essential for cardiac development in mice. J. Biol. Chem. 285, 12344-12354.   DOI   ScienceOn
4 Guo, X., Stafford, L. J., Bryan, B., Xia, C., Ma, W., Wu, X., Liu, D., Songyang, Z. and Liu, M. (2003) A Rac/Cdc42- specific exchange factor, Geft, Induces cell proliferation, transformation, and migration. J. Biol. Chem. 278, 13207-13215.   DOI   ScienceOn
5 Schmidt, A. and Hall, A. (2002) Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 16, 1587-1609.   DOI   ScienceOn
6 Bryan, B. A., Mitchell, D. C., Zhao, L., Ma, W., Stafford, L. J., Teng, B. B. and Liu, M. (2005) Modulation of muscle regeneration, myogenesis, and adipogenesis by the Rho family guanine nucleotide exchange factor GEFT. Mol. Cell. Biol. 25, 11089-11101.   DOI   ScienceOn
7 Himmel, K. L., Bi, F., Shen, H., Jenkins, N. A., Copeland N. G., Zheng, Y., and Largaespada, D. A. (2002) Activation of clg, a novel dbl family guanine nucleotide exchange factor gene, by proviral insertion at evi24, a common integration site in B cell and myeloid leukemias. J. Biol. Chem. 277, 13463-13472.   DOI   ScienceOn
8 Debant, A., Serra-Pages, C., Seipel, K., O'Brien, S., Tang, M., Park, S. H. and Streuli, M. (1996) The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factor domains. Proc. Natl. Acad. Sci. U.S.A. 93, 5466-5471.   DOI   ScienceOn
9 Lezoualc'h, F., Metrich, M., Hmitou, I., Duquesnes, N. and Morel, E. (2008) Small GTP-binding proteins and their regulators in cardiac hypertrophy. J. Mol. Cell. Cardiol. 44, 623-632.   DOI   ScienceOn
10 Linseman, D. A. and Loucks, F. A. (2008) Diverse roles of Rho family GTPases in neuronal development, survival, and death. Front Biosci. 13, 657-676.   DOI
11 Primeau, M. and Lamarche-Vane, N. (2008) A brief overview of the small Rho GTPases. Med. Sci. 24,157-162.
12 Spindler, V., Schlegel, N. and Waschke, J. (2010) Role of GTPases in control of microvascular permeability. Cardiovasc. Res. 87, 243-253.   DOI   ScienceOn
13 Wang, J., Xu, N., Feng, X., Hou, N., Zhang, J., Cheng, X., Chen, Y., Zhang, Y. and Yang, X. (2005) Targeted disruption of Smad4 in cardiomyocytes results in cardiac hypertrophy and heart failure. Circ. Res. 97, 821-828.   DOI   ScienceOn
14 Yang, X., Li, C., Herrera, P. L. and Deng, C. X. (2002) Generation of Smad4/Dpc4 conditional knochout mice. Genesis 32, 81-82.
15 Li, F., Lan, Y., Wang, Y., Wang, J., Yang, G., Meng, F., Han, H., Meng, A., Wang, Y. and Yang, X. (2011) Endothelial smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch. Dev. Cell. 20, 291-302.   DOI   ScienceOn
16 Guo, S. L., Peng, Z., Yang, X., Fan, K. J., Ye, H., Li, Z. H., Wang, Y., Xu, X. L., Li, J., Wang, Y. L., Teng, Y. and Yang, X. (2011) miR-148a promoted cell proliferation by targeting p27 in gastric cancer cells. Int. J. Biol. Sci. 7, 567-574.   DOI
17 Bryan, B., Kumar, V., Stafford, L. J., Cai, Y., Wu, G. and Liu, M. (2004) GEFT, A Rho family guanine nucleotide exchange factor, regulates neurite outgrowth and dendritic spine formation. J. Biol. Chem. 279, 45824-45832.   DOI   ScienceOn
18 Lutz, S., Shankaranarayanan, A., Coco, C., Ridilla, M., Nance, M. R., Vettel, C., Baltus, D., Evelyn, C. R., Neubig, R. R., Wieland, T. and Tesmer, J. J. (2007) Structure of Gaq-p63RhoGEF-RhoA complex reveals a pathway for the activation of RhoA by GPCRs. Science 318, 1923-1927.   DOI   ScienceOn
19 Rojas, R. J., Yohe, M. E., Gershburg, S., Kawano, T., Kozasa, T. and Sondek, J. (2007) $G{\alpha}q$ directly activates p63RhoGEF and Trio via a conserved extension of the Dbl homology-associated pleckstrin homology domain. J. Biol. Chem. 282, 29201-29210.   DOI   ScienceOn
20 Liu, P., Jenkins, N. A. and Copeland, N. G. (2003) A highly efficient recombineering-based method for generating. Genome Res. 13, 476-484.   DOI   ScienceOn
21 Farley, F. W., Soriano, P., Steffen, L. S. and Dymecki, S. M. (2000) Widespread recombinase expression using FLPeR (Flipper) mice. Genesis 28, 106-110.   DOI   ScienceOn
22 Verzi, M. P., McCulley, D. J., De Val, S., Dodou, E. and Black, B. L. (2005) The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev. Biol. 287, 134-145.   DOI   ScienceOn
23 Prall, O. W., Menon, M. K., Solloway, M. J., Watanabe, Y., Zaffran, S., Bajolle, F., Biben, C., McBride, J. J., Robertson, B. R., Chaulet, H., Stennard, F. A., Wise, N., Schaft, D., Wolstein, O., Furtado, M. B., Shiratori, H., Chien, K. R., Hamada, H., Black, B. L., Saga, Y., Robertson, E. J., Buckingham, M. E. and Harvey, R. P. (2007) An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell 128, 947-959.   DOI   ScienceOn
24 Curtis, C., Hemmeryckx, B., Haataja, L., Senadheera, D., Groffen, J. and Heisterkamp, N. (2004) Scambio, a novel guanine nucleotide exchange factor for Rho. Mol. Cancer 23, 10.
25 Blomquist, A., Schworer, G., Schablowski, H., Psoma, A., Lehnen, M., Jakobs, K. H., and Rumenapp, U. (2000) Identification and characterization of a novel Rho-specific guanine nucleotide exchange factor. Biochem. J. 352, 319-325.   DOI   ScienceOn
26 Samuel, F. and Hynds, D. L. (2010) RHO GTPase signaling for axon extension: is prenylation important? Mol. Neurobiol. 42, 133-142.   DOI   ScienceOn
27 Lazer, G. and Katzav, S. (2011) Guanine nucleotide exchange factors for RhoGTPases: good therapeutic targets for cancer therapy? Cell Signal. 23, 969-979.   DOI   ScienceOn
28 Wei, L., Imanaka-Yoshida, K., Wang, L., Zhan, S., Schneider, M. D., DeMayo, F. J. and Schwartz, R. J. (2002) Inhibition of Rho family GTPases by Rho GDP dissociation inhibitor disrupts. Development 129, 1705-1714.