Browse > Article
http://dx.doi.org/10.5483/BMBRep.2015.48.4.273

Drosophila blood as a model system for stress sensing mechanisms  

Shim, Jiwon (Department of Life Science, College of Natural Science, Hanyang University)
Publication Information
BMB Reports / v.48, no.4, 2015 , pp. 223-228 More about this Journal
Abstract
The Drosophila lymph gland is the hematopoietic organ in which stem-like progenitors proliferate and give rise to myeloid-type blood cells. Mechanisms involved in Drosophila hematopoiesis are well established and known to be conserved in the vertebrate system. Recent studies in Drosophila lymph gland have provided novel insights into how external and internal stresses integrate into blood progenitor maintenance mechanisms and the control of blood cell fate decision. In this review, I will introduce a developmental overview of the Drosophila hematopoietic system, and recent understandings of how the system uses developmental signals not only for hematopoiesis but also as sensors for stress and environmental changes to elicit necessary blood responses. [BMB Reports 2015; 48(4): 223-228]
Keywords
Adenosine; Blood progenitors; Drosophila; Hypoxia; Insulin; Lymph gland; Olfaction; Progenitor; ROS; Starvation; Stem cell; Stress;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Roberts MR (2007) Does GABA Act as a Signal in Plants?: Hints from Molecular Studies. Plant Signal Behav 2, 408-409   DOI
2 Li K and Xu E (2008) The role and the mechanism of gamma-aminobutyric acid during central nervous system development. Neurosci Bull 24, 195-200   DOI
3 Ferkany JW, Smith LA, Seifert WE, Caprioli RM and Enna SJ (1978) Measurement of gamma-aminobutyric acid (GABA) in blood. Life Sci 22, 2121-2128   DOI   ScienceOn
4 Steidl U, Bork S, Schaub S et al (2004) Primary human CD34+ hematopoietic stem and progenitor cells express functionally active receptors of neuromediators. Blood 104, 81-88   DOI   ScienceOn
5 Shim J, Gururaja-Rao S and Banerjee U (2013) Nutritional regulation of stem and progenitor cells in Drosophila. Development 140, 4647-4656   DOI   ScienceOn
6 Slaidina M, Delanoue R, Gronke S, Partridge L and Léopold P (2009) A Drosophila insulin-like peptide promotes growth during nonfeeding states. Dev Cell 17, 874-884   DOI   ScienceOn
7 Wood W and Jacinto A (2007) Drosophila melanogaster embryonic haemocytes: masters of multitasking. Nat Rev Mol Cell Biol 8, 542-551   DOI   ScienceOn
8 Makhijani K and Brückner K (2012) Of blood cells and the nervous system: hematopoiesis in the Drosophila larva. Fly 6, 254-260   DOI
9 Tepass U, Fessler LI, Aziz A and Hartenstein V (1994) Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development 120, 1829-1837
10 Evans CJ, Hartenstein V and Banerjee U (2003) Thicker than blood: conserved mechanisms in Drosophila and vertebrate hematopoiesis. Dev Cell 5, 673-690   DOI   ScienceOn
11 Lanot R, Zachary D, Holder F and Meister M (2001) Postembryonic hematopoiesis in Drosophila. Dev Biol 230, 243-257   DOI   ScienceOn
12 Jung SH, Evans CJ, Uemura C and Banerjee U (2005) The Drosophila lymph gland as a developmental model of hematopoiesis. Development 132, 2521-2533   DOI   ScienceOn
13 Krzemień J, Dubois L, Makki R, Meister M, Vincent A and Crozatier M (2007) Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre. Nature 446, 325-328   DOI   ScienceOn
14 Mukherjee T, Kim WS, Mandal L and Banerjee U (2011) Interaction between Notch and Hif-alpha in development and survival of Drosophila blood cells. Science 332, 1210-1213   DOI   ScienceOn
15 Mandal L, Martinez-Agosto JA, Evans CJ, Hartenstein V and Banerjee U (2007) A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature 446, 320-324   DOI   ScienceOn
16 Lebestky T, Chang T, Hartenstein V and Banerjee U (2000) Specification of Drosophila hematopoietic lineage by conserved transcription factors. Science 288, 146-149   DOI   ScienceOn
17 Makhijani K, Alexander B, Tanaka T, Rulifson E and Brückner K (2011) The peripheral nervous system supports blood cell homing and survival in the Drosophila larva. Development 138, 5379-5391   DOI   ScienceOn
18 Sinenko SA, Shim J and Banerjee U (2012) Oxidative stress in the haematopoietic niche regulates the cellular immune response in Drosophila. EMBO Rep 13, 83-89   DOI   ScienceOn
19 Rizki TM and Rizki RM (1992) Lamellocyte differentiation in Drosophila larvae parasitized by Leptopilina. Dev Comp Immunol 16, 103-110   DOI   ScienceOn
20 Grigorian M, Mandal L and Hartenstein V (2011) Hematopoiesis at the onset of metamorphosis: terminal differentiation and dissociation of the Drosophila lymph gland. Dev Genes Evol 221, 121-131   DOI   ScienceOn
21 Lemaitre B and Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25, 697-743   DOI   ScienceOn
22 Ligoxygakis P (2013) Genetics of immune recognition and response in Drosophila host defense. Adv Genet 83, 71-97   DOI   ScienceOn
23 Imler JL and Bulet P (2005) Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem Immunol Allergy 86, 1-21
24 Ha EM, Oh CT, Bae YS and Lee WJ (2005) A direct role for dual oxidase in Drosophila gut immunity. Science 310, 847-850   DOI   ScienceOn
25 Wicker C, Reichhart JM, Hoffmann D, Hultmark D, Samakovlis C and Hoffmann JA (1990) Insect immunity. Characterization of a Drosophila cDNA encoding a novel member of the diptericin family of immune peptides. J Biol Chem 265, 22493-22498
26 Ferrandon D, Imler JL, Hetru C and Hoffmann JA (2007) The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 7, 862-874   DOI   ScienceOn
27 Franc NC, Heitzler P, Ezekowitz RA and White K (1999) Requirement for croquemort in phagocytosis of apoptotic cells in Drosophila. Science 284, 1991-1994   DOI   ScienceOn
28 Ha EM, Oh CT, Ryu JH et al (2005) An antioxidant system required for host protection against gut infection in Drosophila. Dev Cell 8, 125-132   DOI   ScienceOn
29 Meister M (2004) Blood cells of Drosophila: cell lineages and role in host defence. Curr Opin Immunol 16, 10-15   DOI   ScienceOn
30 Rämet M, Pearson A, Manfruelli P et al (2001) Drosophila scavenger receptor CI is a pattern recognition receptor for bacteria. Immunity 15, 1027-1038   DOI   ScienceOn
31 Pearson A, Lux A and Krieger M (1995) Expression cloning of dSR-CI, a class C macrophage-specific scavenger receptor from Drosophila melanogaster. Proc Natl Acad Sci U S A 92, 4056-4060   DOI
32 Kocks C, Cho JH, Nehme N et al (2005) Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 123, 335-346   DOI   ScienceOn
33 Zettervall CJ, Anderl I, Williams MJ et al (2004) A directed screen for genes involved in Drosophila blood cell activation. Proc Natl Acad Sci U S A 101, 14192-14197   DOI   ScienceOn
34 Watson FL, Püttmann-Holgado R, Thomas F et al (2005) Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309, 1874-1878   DOI   ScienceOn
35 Russo J, Dupas S, Frey F, Carton Y and Brehelin M (1996) Insect immunity: early events in the encapsulation process of parasitoid (Leptopilina boulardi) eggs in resistant and susceptible strains of Drosophila. Parasitology 112 ( Pt 1), 135-142   DOI
36 Stofanko M, Kwon SY and Badenhorst P (2010) Lineage tracing of lamellocytes demonstrates Drosophila macrophage plasticity. PLoS One 5, e14051   DOI   ScienceOn
37 Krzemien J, Oyallon J, Crozatier M and Vincent A (2010) Hematopoietic progenitors and hemocyte lineages in the Drosophila lymph gland. Dev Biol 346, 310-319   DOI   ScienceOn
38 Luo H, Hanratty WP and Dearolf CR (1995) An amino acid substitution in the Drosophila hopTum-l Jak kinase causes leukemia-like hematopoietic defects. EMBO J 14, 1412-1420
39 Qiu P, Pan PC and Govind S (1998) A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development 125, 1909-1920
40 Kwon SY, Xiao H, Glover BP, Tjian R, Wu C and Badenhorst P (2008) The nucleosome remodeling factor (NURF) regulates genes involved in Drosophila innate immunity. Dev Biol 316, 538-547   DOI   ScienceOn
41 Söderhäll K and Cerenius L (1998) Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol 10, 23-28   DOI   ScienceOn
42 Tothova Z and Gilliland DG (2007) FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 1, 140-152   DOI   ScienceOn
43 Owusu-Ansah E and Banerjee U (2009) Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461, 537-541   DOI   ScienceOn
44 Gao H, Wu X, Simon L and Fossett N (2014) Antioxidants maintain e-cadherin levels to limit Drosophila prohemocyte differentiation. PloS One 9, e107768   DOI
45 Harris TJ and Tepass U (2010) Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol 11, 502-514   DOI   ScienceOn
46 Jarecki J, Johnson E and Krasnow MA (1999) Oxygen regulation of airway branching in Drosophila is mediated by branchless FGF. Cell 99, 211-220   DOI   ScienceOn
47 Dragojlovic-Munther M and Martinez-Agosto JA (2012) Multifaceted roles of PTEN and TSC orchestrate growth and differentiation of Drosophila blood progenitors. Development 139, 3752-3763   DOI   ScienceOn
48 Sinenko SA, Hung T, Moroz T et al (2010) Genetic manipulation of AML1-ETO-induced expansion of hematopoietic precursors in a Drosophila model. Blood 116, 4612-4620   DOI   ScienceOn
49 Gorr TA, Gassmann M and Wappner P (2006) Sensing and responding to hypoxia via HIF in model invertebrates. J Insect Physiol 52, 349-364   DOI   ScienceOn
50 Cramer T, Yamanishi Y, Clausen BE et al (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112, 645-657   DOI   ScienceOn
51 Azad P, Ryu J and Haddad GG (2011) Distinct role of Hsp70 in Drosophila hemocytes during severe hypoxia. Free Radic Biol Med 51, 530-538   DOI   ScienceOn
52 Hietakangas V and Cohen SM (2009) Regulation of tissue growth through nutrient sensing. Annu Rev Genet 43, 389-410   DOI   ScienceOn
53 Benmimoun B, Polesello C, Waltzer L and Haenlin M (2012) Dual role for Insulin/TOR signaling in the control of hematopoietic progenitor maintenance in Drosophila. Development 139, 1713-1717   DOI   ScienceOn
54 Shim J, Mukherjee T and Banerjee U (2012) Direct sensing of systemic and nutritional signals by haematopoietic progenitors in Drosophila. Nat Cell Biol 14, 394-400   DOI   ScienceOn
55 Tokusumi Y, Tokusumi T, Shoue DA and Schulz RA (2012) Gene regulatory networks controlling hematopoietic progenitor niche cell production and differentiation in the Drosophila lymph gland. PloS One 7, e41604   DOI
56 Mercier FE, Ragu C and Scadden DT (2012) The bone marrow at the crossroads of blood and immunity. Nat Rev Immunol 12, 49-60   DOI   ScienceOn
57 DiAngelo JR, Bland ML, Bambina S, Cherry S and Birnbaum MJ (2009) The immune response attenuates growth and nutrient storage in Drosophila by reducing insulin signaling. Proc Natl Acad Sci U S A 106, 20853-20858   DOI   ScienceOn
58 Mondal BC, Mukherjee T, Mandal L et al (2011) Interaction between differentiating cell- and niche-derived signals in hematopoietic progenitor maintenance. Cell 147, 1589-1600   DOI   ScienceOn
59 Ng WL and Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43, 197-222   DOI   ScienceOn
60 Gancz D and Gilboa L (2013) Insulin and Target of rapamycin signaling orchestrate the development of ovarian niche-stem cell units in Drosophila. Development 140, 4145-4154   DOI   ScienceOn
61 Shim J, Mukherjee T, Mondal BC et al (2013) Olfactory control of blood progenitor maintenance. Cell 155, 1141-1153   DOI   ScienceOn