• 제목/요약/키워드: Cell division cycle

검색결과 331건 처리시간 0.029초

PP2A function toward mitotic kinases and substrates during the cell cycle

  • Jeong, Ae Lee;Yang, Young
    • BMB Reports
    • /
    • 제46권6호
    • /
    • pp.289-294
    • /
    • 2013
  • To maintain cellular homeostasis against the demands of the extracellular environment, a precise regulation of kinases and phosphatases is essential. In cell cycle regulation mechanisms, activation of the cyclin-dependent kinase (CDK1) and cyclin B complex (CDK1:cyclin B) causes a remarkable change in protein phosphorylation. Activation of CDK1:cyclin B is regulated by two auto-amplification loops-CDK1:cyclin B activates Cdc25, its own activating phosphatase, and inhibits Wee1, its own inhibiting kinase. Recent biological evidence has revealed that the inhibition of its counteracting phosphatase activity also occurs, and it is parallel to CDK1:cyclin B activation during mitosis. Phosphatase regulation of mitotic kinases and their substrates is essential to ensure that the progression of the cell cycle is ordered. Outlining how the mutual control of kinases and phosphatases governs the localization and timing of cell division will give us a new understanding about cell cycle regulation.

Autophagy Inhibition with Monensin Enhances Cell Cycle Arrest and Apoptosis Induced by mTOR or Epidermal Growth Factor Receptor Inhibitors in Lung Cancer Cells

  • Choi, Hyeong Sim;Jeong, Eun-Hui;Lee, Tae-Gul;Kim, Seo Yun;Kim, Hye-Ryoun;Kim, Cheol Hyeon
    • Tuberculosis and Respiratory Diseases
    • /
    • 제75권1호
    • /
    • pp.9-17
    • /
    • 2013
  • Background: In cancer cells, autophagy is generally induced as a pro-survival mechanism in response to treatment-associated genotoxic and metabolic stress. Thus, concurrent autophagy inhibition can be expected to have a synergistic effect with chemotherapy on cancer cell death. Monensin, a polyether antibiotic, is known as an autophagy inhibitor, which interferes with the fusion of autophagosome and lysosome. There have been a few reports of its effect in combination with anticancer drugs. We performed this study to investigate whether erlotinib, an epidermal growth factor receptor inhibitor, or rapamycin, an mammalian target of rapamycin (mTOR) inhibitor, is effective in combination therapy with monensin in non-small cell lung cancer cells. Methods: NCI-H1299 cells were treated with rapamycin or erlotinib, with or without monensin pretreatment, and then subjected to growth inhibition assay, apoptosis analysis by flow cytometry, and cell cycle analysis on the basis of the DNA contents histogram. Finally, a Western blot analysis was done to examine the changes of proteins related to apoptosis and cell cycle control. Results: Monensin synergistically increases growth inhibition and apoptosis induced by rapamycin or erlotinib. The number of cells in the sub-$G_1$ phase increases noticeably after the combination treatment. Increase of proapoptotic proteins, including bax, cleaved caspase 3, and cleaved poly(ADP-ribose) polymerase, and decrease of anti-apoptotic proteins, bcl-2 and bcl-xL, are augmented by the combination treatment with monensin. The promoters of cell cycle progression, notch3 and skp2, decrease and p21, a cyclin-dependent kinase inhibitor, accumulates within the cell during this process. Conclusion: Our findings suggest that concurrent autophagy inhibition could have a role in lung cancer treatment.

인체 흑색종 세포에 대한 와송 추출물의 세포주기 억제를 통한 항암효과와 기전 연구 (Anticancer and Signaling Mechanisms of Biologically Active Substances from Orostachys japonicus through Arrest of Cell cycle in Human Melanoma Cells)

  • 류덕현;류덕선
    • 한방안이비인후피부과학회지
    • /
    • 제32권4호
    • /
    • pp.1-12
    • /
    • 2019
  • Objectives : The purpose of this study was to identify the anticancer effect of biological substances of ethylacetate(EtOAc) fraction from Orostachys japonicus(OJEF), their effect on human melanoma A375 cells and the related molecular mechanisms. Methods : The MTS assay was used to confirm the inhibition of cancer cell proliferation in A375 cells. And the $MUSE^{TM}$ analyzer was used to determine the ability of OJEF to induce cell cycle arrest. Western blotting was used to determine the changes in protein expression in A375 cells after treatment with OJEF. Results : OJEF showed cytotoxicity to A375 cells. And cell cycle arrest occurred in G1 phase and G2/M phase owing to inhibition of CDK1, cyclin B1, CDK4, and cyclin D, which are related to cell cycle regulation and cell division control. Conclusion : OJEF is effective in regulating cell cycle of human melanoma cells and thus can be a good theraputic agent to treat patients with melanoma.

Suppressor of Variegation 3-9 Homolog 2, a Novel Binding Protein of Translationally Controlled Tumor Protein, Regulates Cancer Cell Proliferation

  • Kim, A-Reum;Sung, Jee Young;Rho, Seung Bae;Kim, Yong-Nyun;Yoon, Kyungsil
    • Biomolecules & Therapeutics
    • /
    • 제27권2호
    • /
    • pp.231-239
    • /
    • 2019
  • Suppressor of Variegation 3-9 Homolog 2 (SUV39H2) methylates the lysine 9 residue of histone H3 and induces heterochromatin formation, resulting in transcriptional repression or silencing of target genes. SUV39H1 and SUV39H2 have a role in embryonic development, and SUV39H1 was shown to suppress cell cycle progression associated with Rb. However, the function of human SUV39H2 has not been extensively studied. We observed that forced expression of SUV39H2 decreased cell proliferation by inducing $G_1$ cell cycle arrest. In addition, SUV39H2 was degraded through the ubiquitin-proteasomal pathway. Using yeast two-hybrid screening to address the degradation mechanism and function of SUV39H2, we identified translationally controlled tumor protein (TCTP) as an SUV39H2-interacting molecule. Mapping of the interacting regions indicated that the N-terminal 60 amino acids (aa) of full-length SUV39H2 and the C-terminus of TCTP (120-172 aa) were critical for binding. The interaction of SUV39H2 and TCTP was further confirmed by co-immunoprecipitation and immunofluorescence staining for colocalization. Moreover, depletion of TCTP by RNAi led to up-regulation of SUV39H2 protein, while TCTP overexpression reduced SUV39H2 protein level. The half-life of SUV39H2 protein was significantly extended upon TCTP depletion. These results clearly indicate that TCTP negatively regulates the expression of SUV39H2 post-translationally. Furthermore, SUV39H2 induced apoptotic cell death in TCTP-knockdown cells. Taken together, we identified SUV39H2, as a novel target protein of TCTP and demonstrated that SUV39H2 regulates cell proliferation of lung cancer cells.

Analysis of Lysophosphatidic Acid Receptor 1 Expression in the Uterus during the Estrous Cycle and Pregnancy in Pigs

  • Seo, Hee-Won;Kim, Min-Goo;Choi, Yo-Han;Ka, Hak-Hyun
    • Reproductive and Developmental Biology
    • /
    • 제33권3호
    • /
    • pp.147-152
    • /
    • 2009
  • Lysophosphatidic acid (LPA), a simple phospholipid-derived mediator implicated in diverse biological actions, acts through the specific G-protein coupled receptors, LPA receptor (LPAR) $1{\sim}5$. Our previous study showed that LPAR3 is expressed in the uterine endometrium in a cell type- and stage-specific manner and LPA via LPAR3 increases PTGS2 expression in the uterine endometrium during the period of implantation. Although LPAR3 is considered to be predominant LPA receptor in the uterine endometrium, other LPA receptors might playa role to mediate LPA functions in the uterine endometrium during pregnancy. Among LPARs, we investigated expression of LPAR1 during the estrous cycle and pregnancy in this study. Uterine endometrial tissue samples were collected from day (D) 12 and D15 of the estrous cycle and from D12, D15, D30, D60, D90 and D114 of pregnancy. Northern blot analysis determined that LPAR1 mRNA was constitutively expressed in the uterine endometrial tissues during the estrous cycle and pregnancy of all stages. Analysis by immunoblotting revealed that LPAR1 proteins were present in the porcine uterine endometrium during the estrous cycle and pregnancy. Immunohistochemical experiments demonstrated that LP AR1 protein was localized to endometrial epithelium and stromal cell, specifically to nuclei of these cell types. Results in this study show that LPAR1 is constitutively expressed in the uterine endometrium during the estrous cycle and pregnancy. These results suggest that LPA via LPAR1 may playa role in the uterine endometrial function throughout pregnancy in pigs.

SCFFBS1 Regulates Root Quiescent Center Cell Division via Protein Degradation of APC/CCCS52A2

  • Geem, Kyoung Rok;Kim, Hyemin;Ryu, Hojin
    • Molecules and Cells
    • /
    • 제45권10호
    • /
    • pp.695-701
    • /
    • 2022
  • Homeostatic regulation of meristematic stem cells accomplished by maintaining a balance between stem cell self-renewal and differentiation is critical for proper plant growth and development. The quiescent center (QC) regulates root apical meristem homeostasis by maintaining stem cell fate during plant root development. Cell cycle checkpoints, such as anaphase promoting complex/cyclosome/cell cycle switch 52 A2 (APC/CCCS52A2), strictly control the low proliferation rate of QC cells. Although APC/CCCS52A2 plays a critical role in maintaining QC cell division, the molecular mechanism that regulates its activity remains largely unknown. Here, we identified SCFFBS1, a ubiquitin E3 ligase, as a key regulator of QC cell division through the direct proteolysis of CCS52A2. FBS1 activity is positively associated with QC cell division and CCS52A2 proteolysis. FBS1 overexpression or ccs52a2-1 knockout consistently resulted in abnormal root development, characterized by root growth inhibition and low mitotic activity in the meristematic zone. Loss-of-function mutation of FBS1, on the other hand, resulted in low QC cell division, extremely low WOX5 expression, and rapid root growth. The 26S proteasome-mediated degradation of CCS52A2 was facilitated by its direct interaction with FBS1. The FBS1 genetically interacted with APC/CCCS52A2-ERF115-PSKR1 signaling module for QC division. Thus, our findings establish SCFFBS1-mediated CCS52A2 proteolysis as the molecular mechanism for controlling QC cell division in plants.

Mad1p, a Component of the Spindle Assembly Checkpoint in Fission Yeast, Suppresses a Novel Septation-defective Mutant, sun1, in a Cell Division Cycle

  • Kim In G.;Rhee Dong K.;Jeong Jae W.;Kim Seong C.;Won Mi S.;Song Ki W.;Kim Hyong B.
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2002년도 추계학술대회
    • /
    • pp.162-172
    • /
    • 2002
  • Schizosaccharomyces pombe is suited for the study of cytokinesis as it divides by forming a septum in the middle of the cell at the end of mitosis. To enhance our understanding of the cytokinesis, we have carried out a genetic screen for temperature-sensitive S. pombe mutants that show defects in septum formation and cell division. Here we present the isolation and characterization of a new temperature-sensitive mutant, sun1(septum uncontrolled), which undergoes uncontrolled septation during cell division cycle at restrictive temperature $(37^{\circ}C)$. In sun1 mutant, actin ring and septum are positioned at random locations and angles, and nuclear division cycle continues. These observations suggest that the sun] gene product is required for the proper placement of the actin ring as well as precise septation. The sun] mutant is monogenic recessive mutation unlinked to previously known various cdc genes of S. pombe. In a screen for $sunl^+$ gene to complement the sun] mutant, we have cloned a gene, $susl^+$(suppressor of sun1 mutant), that encodes a protein of 689 amino acids. The predicted amino acid sequence of $susl^+$ gene is similar to the human hMadlp and Saccharomyces cerevisiae Mad1p, a component of the spindle checkpoint in eukaryotic cells. The null mutant of $susl^+$ gene grows normally at various temperatures and has the increased sensitivity to anti-microtubule drug, while $susl^+$ mutant shows no sensitivity to microtubule destabilizing drugs. The putative S. pombe Sus1p directly interacts with S. pombe Mad2p in yeast two-hybrid assays. These data suggest that the newly isolated susr gene encodes S. pombe Mad1p and suppresses sun] mutant defective in controlled septation in a cell division cycle.

  • PDF

Activated Leukocyte Cell Adhesion Molecule: Expression in the Uterine Endometrium during the Estrous Cycle and Pregnancy in Pigs

  • Kim, Min-Goo;Shim, Jang-Soo;Seo, Hee-Won;Choi, Yo-Han;Lee, Chang-Kyu;Ka, Hak-Hyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권7호
    • /
    • pp.919-928
    • /
    • 2011
  • The pig exhibits true epitheliochorial placentation, where the fetal membrane maintains attachment throughout pregnancy but does not invade into the maternal uterine endometrium. Accordingly, the expression and function of cell adhesion molecules are very important for embryo implantation and the establishment of pregnancy. In our recent microarray analysis, we found that activated leukocyte cell adhesion molecule (ALCAM) was expressed in the uterine endometrium during pregnancy in pigs. To better understand the roles of ALCAM in the establishment and maintenance of pregnancy, we examined ALCAM expression in the uterine endometrium during the estrous cycle and pregnancy in pigs. Real-time RT-PCR analysis showed that ALCAM was differentially expressed in the uterine endometrium during the estrous cycle and pregnancy, with the highest levels on D12 of pregnancy. ALCAM mRNA was localized to the luminal and glandular epithelial cells and to the trophectoderm of conceptuses during early pregnancy. The steroid hormones estrogen and progesterone had no effect on ALCAM expression in an endometrial explant culture study. Further, we found that ALCAM expression in the uterine endometrium from gilts with somatic cell nuclear transfer-derived embryos was not different from that in gilts with embryos from natural mating. ALCAM was expressed in a pregnancy stage- and cell type-specific manner in the uterine endometrium and conceptuses during pregnancy. These findings suggest that ALCAM may play a role in the establishment of pregnancy. Further analysis of ALCAM will provide insight into the implantation process and establishment of pregnancy in pigs.

Effect of benzo(a)pyrene and mitomycine C on HeLa cell division cycle

  • Yu, Il-Je;Lim, Cheol-Hong;Kim, Hyo-Jung;Chung, Kyu-Hyuk;Song, Kyung-Seuk;Han, Jeong-Hee;Chung, Yong-Hyun
    • 한국환경성돌연변이발암원학회지
    • /
    • 제21권2호
    • /
    • pp.82-88
    • /
    • 2001
  • Recently, there has been significant progress in understanding the control process of the cell division cycle. To investigate the influence of toxic substances on the cell cycle, the effect of benzo(a)pyrene (BAP) and mitomycine C (MMC) on synchronized HeLa cells was analyzed during the cell cycle. To synchronize the HeLa cells, 10$^{6}$ cells were grown for 1 day and then treated with 1 mM hydroxyurea for 14 h. The arrested cells were then allowed to proceed through their cell cycle by removing the hydroxyurea and resupplying a fresh medium. The arrested cells in the G1/S transition then proceeded to the S phase after 4 h, the G2/M phase after 8h, and the G1 phase after 12 h, subsequent to the resupply of a fresh medium. In the untreated HeLa cells, the p34$^{cdc2}$ kinase activity, measured using a p34$^{cdc2}$ specific peptide, peaked after 8h (G2/M) and then declined after 12 h (G1). However, treatment with 30 $\mu$M BAP delayed the peak of the p34$^{cdc2}$ kinase activity. The amount of p34$^{cdc2}$ remained unchanged in the untreated, BAP-, and MMC-treated cells throughout the cell cycle. The cyclin B level peaked after 8 h in the untreated cells, yet peaked after 10-12 h in the BAP-treated cells. There was no significant change in the cyclin B level in the MMC-treated cells.

  • PDF