• 제목/요약/키워드: Cell division

검색결과 5,311건 처리시간 0.048초

Overexpression of Recombinant Arylsulfatase Cloned from Pseudoalteromonas carrageenovora

  • Kim Jong-Oh;Kim Seok-Ryel;Lim Jae-Myung;Nam Soo-Wan;Kim Hyeung-Rak
    • Fisheries and Aquatic Sciences
    • /
    • 제8권3호
    • /
    • pp.118-121
    • /
    • 2005
  • Arylsulfatase cloned from a marine bacterium, Pseudoalteromonas carrageenovora, was over-expressed in Escherichia coli. Most of the recombinant arylsulfatase was found in the cell lysate with induction up to $10{\mu}M$ IPTG. However, enzyme activity was observed both in the culture supernatant and cell lysate by induction with IPTG concentration of $50-5,000{\mu}M$. Most of the recombinant enzyme was localized in the periplasmic space with $10{\mu}M$ IPTG induction, while half of the enzyme was distributed in the periplasmic space with $50{\mu}M$ IPTG induction. Cell growth and arylsulfatase activity did not change with the induction time, and the level of recombinant arylsulfatase expression was maintained at 4-5 U/mL after 6 to 14 hr of culture.

Cell Balancing Scheme with Series Coupling of Multiple Primary Windings for Hybrid Electric Vehicle Lithium-Ion Battery Cells

  • Park, Hong-Sun;Kim, Chong-Eun;Moon, Gun-Woo;Lee, Joong-Hui
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.347-349
    • /
    • 2007
  • Charge equalization scheme for HEV lithium-ion battery system is proposed in this paper, where all the primary windings with in parallel bi-directional switches are coupled in series to provide the equalizing energy from the whole battery string to the specific under charged cells. Moreover, to realize minimized size of equalization circuit employing the proposed cell balancing scheme, the optimal power rating design rule according to equalization time and SOC distribution of imbalance is proposed. A prototype of HEV lithium-ion battery system of four cells shows the outstanding charge equalization performance while maintaining greatly reduced size of cell balancing circuit.

  • PDF

Cadmium induces neurotoxicity via activation of JNK and c-JUN in human neuroblastoma cell

  • Kim, Sun-Don;Moon, C.K.;Jo, Sang-Mee
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.182.1-182.1
    • /
    • 2003
  • Occupational exposure to cadmium (Cd) can result in brain disorders and olfactory dysfunction is the most well-known symptom. Recently Cd has been shown to induce apoptosis by activating MAPKs in various cell types. However, intracellular signaling pathways of Cd-induced cytotoxicity in neuronal cells is not known well. Thus, in the present study, we studied role of JNK and its well-known downstream transcription factor, c-JUN, in Cd-induced neuronal cell death. (omitted)

  • PDF

단층 및 입체 세포배양환경에서 세슘, 스트론튬 및 코발트가 세포 독성에 미치는 영향 분석 (The Effects of Cesium, Strontium and Cobalt on Cell Toxicity in the 2D and 3D Cell Culture Platforms)

  • 김지용;강성민;장성찬;허윤석;노창현
    • 환경생물
    • /
    • 제34권2호
    • /
    • pp.107-115
    • /
    • 2016
  • 전 세계적으로 원자력 발전소는 442기가 가동 중이며, 62기가 충원될 예정이다. 원자력 발전소의 증가에 따라 방사성 폐기물 유출에 대한 위험성도 증가하였다. 이러한 이유 때문에, 방사성 폐기물의 처리는 인간, 동물, 식물을 포함하는 자연 생태계를 보전하는 관점에서 중요하다. 또한, 방사성 폐기물 유출은 그 지역뿐만 아니라 전 세계적으로 심각한 문제를 야기한다. 본 연구는 입체 배양세포에 방사성 핵종원소(세슘, 스트론튬, 코발트)를 처리하였고 이에 대한 영향력을 확인하였다. 입체 배양 구조체는 아가로오스 하이드로겔을 이용하여 제작했으며 암세포 및 정상세포 (HeLa, HepG2, COS-7)를 사용하여 입체 배양을 실시 하였다. 입체 형태로 세포를 배양한 후 세슘, 스트론튬, 코발트 농도 변화에 따라 세포 생존능력을 분석하였다. 이때 입체 배양세포에서 생존능력이 단층 배양세포 보다 최대 42% 우수한 것을 확인하였다. 입체 배양구조체는 세포가 형태 및 생리학적으로 in vivo환경인 조직과 비슷하게 배양을 가능하게 하였다. 따라서, 입체 배양구조체는 기존의 단층 배양 한계점인 in vivo 환경에 적용시킬 수 없다는 한계를 극복하였다. 본 입체 배양 기술이 중금속 독성평가 및 단시간 내에 다수의 물질 분석을 수행하는 고속 대량 스크리닝 기술에 활용될 것으로 기대한다.

Comparative Differential Expressions of Porcine Satellite Cell during Adipogenesis, Myogenesis, and Osteoblastogenesis

  • Jeong, Jin Young;Kim, Jang Mi;Rajesh, Ramanna Valmiki;Suresh, Sekar;Jang, Gul Won;Lee, Kyung-Tai;Kim, Tae Hun;Park, Mina;Jeong, Hak Jae;Kim, Kyung Woon;Cho, Yong Min;Lee, Hyun-Jeong
    • Reproductive and Developmental Biology
    • /
    • 제37권4호
    • /
    • pp.225-232
    • /
    • 2013
  • Satellite cells were derived from muscular tissue in postnatal pig. Satellite cell is an important to growth and development in animal tissues or organs. However, the progress underlying induced differentiation is not clear. The aim of this study was to evaluate the morphologic and the transcriptome changes in porcine satellite cell (PSC) treated with insulin, rosiglitazone, or dexamethasone respectively. PSC was obtained from postnatal muscle tissue. In study 1, for study the effect of insulin and FBS on the differentiated satellite cells, cells were cultured at absence or presence of insulin treated with FBS. Total RNA was extracted for determining the expression levels of myogenic PAX3, PAX7, Myf5, MyoD, and myogenin genes by real-time PCR. Myogenic genes decreased expression levels of mRNA in treated with insulin. In study 2, in order to clarify the relationship between rosiglitazone and lipid in differentiated satellite cells, we further examined the effect of FBS on lipid accumulation in the presence or absence of the rosiglitazone and lipid. Significant differences were observed between rosiglitazone and lipid by FBS. The mRNA of FABP4 and $PPAR{\gamma}$ increased in rosiglitazone treatment. In study 3, we examined the effect of dexamethasone on osteogenic differentiation in PSC. The mRNA was increased osteoblasotgenic ALP and ON genes treated with dexamethasone in 2% FBS. Dexamethasone induces osteoblastogenesis in differentiated PSC. Taken together, in differentiated PSCs, FABP4 and $PPAR{\gamma}$ increased to rosiglitazone. Whereas, no differences to FBS and lipid. These results were not comparable with previous reports. Our results suggest that adipogenic, myogenic, and osteoblastogenic could be isolated from porcine skeletal muscle, and identify culture conditions which optimize proliferation and differentiation formation of PSC.

Effect of agitation speed on production of exopolymer by Pseudomonas elodea NK-2000

  • 이남규;김현숙;손창우;이유정;조영수;이진우
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.334-337
    • /
    • 2000
  • Extracellular polysaccharide was produced by Pseudomonas elodea NK-2000 under nitrogen limitation and aerobic condition, The effect of agiatation speed on cell growth and production of exopolymer was investigated. The agitation speed of 7.5 L fermentor ranged from 200 to 500 rpm. Production of exopolymer increased with higher agitation speed. Maximal cell growth and production of exopolymer from 2% glucose were 3.35 g/l and 3.80 g/l, respectively when agitation speed was 400 rpm.

  • PDF

Electro Optical Study of the Liquid Crystals & Polyimides For High Reliability Performance

  • Lee, S.M.;Noh, M.;Ko, T.W.;Choi, H.C.;Lee, S.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1484-1486
    • /
    • 2005
  • To achieve the high reliability performance in IPS cell, finding a good combination of Liquid Crystal (LC) materials and Polyimide (PI) is very important as they play a key role in IPS cell. Several LC materials and PIs have been introduced for preparation of their different combinations. Electro optical characteristics such as voltage holding ratio, residual DC and AC image sticking have been investigated for the different system of the LC material and PI in the test panels in an attempt to find the effects on the display reliability performance and image sticking.1)3)

  • PDF

바이오 셀 영상 분할에 관한 연구 (A Study on the Bio-Cell Image Segmentation)

  • 전병태;이형구;조수현;정연구;박선희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (상)
    • /
    • pp.743-746
    • /
    • 2002
  • 바이오 인포매틱스(bioinformatics) 분야 중 한 분야인 셀 기반 분석(cell-based assay) 시스템 구축의 필요성이 최근 대두되고 있다. 특정 시약 또는 시험 물질을 셀 세포에 투여했을 때 시간 축 변화에 따라 변화하는 세포의 변화를 감지하기 위해서 세포 영상의 영역 분할이 선행되어야 한다. 본 논문에서는 전체 영상에 대하여 셀 공통 영역을 추출하고, 추출된 공통영역을 스네이크(snake) 기법을 이용하여 세포 영역을 분할하는 방법을 제안하고자 한다.

  • PDF

Changes in plant hydraulic conductivity in response to water deficit

  • Kim, Yangmin X.;Sung, Jwakyung;Lee, Yejin;Lee, Seulbi;Lee, Deogbae
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.35-35
    • /
    • 2017
  • How do plants take up water from soils especially when water is scarce in soils? Plants have a strategy to respond to water deficit to manage water necessary for their survival and growth. Plants regulate water transport inside them. Water flows inside the plant via (i) apoplastic pathway including xylem vessel and cell wall and (ii) cell-to-cell pathway including water channels sitting in cell membrane (aquaporins). Water transport across the root and leaf is explained by a composite transport model including those pathways. Modification of the components in those pathways to change their hydraulic conductivity can regulate water uptake and management. Apoplastic barrier is modified by producing Casparian band and suberin lamellae. These structures contain suberin known to be hydrophobic. Barley roots with more suberin content from the apoplast showed lower root hydraulic conductivity. Root hydraulic conductivity was measured by a root pressure probe. Plant root builds apoplastic barrier to prevent water loss into dry soil. Water transport in plant is also regulated in the cell-to-cell pathway via aquaporin, which has received a great attention after its discovery in early 1990s. Aquaporins in plants are known to open or close to regulate water transport in response to biotic and/or abiotic stresses including water deficit. Aquaporins in a corn leaf were opened by illumination in the beginning, however, closed in response to the following leaf water potential decrease. The evidence was provided by cell hydraulic conductivity measurement using a cell pressure probe. Changing the hydraulic conductivity of plant organ such as root and leaf has an impact not only on the speed of water transport across the plant but also on the water potential inside the plant, which means plant water uptake pattern from soil could be differentiated. This was demonstrated by a computer simulation with 3-D root structure having root hydraulic conductivity information and soil. The model study indicated that the root hydraulic conductivity plays an important role to determine the water uptake from soil with suboptimal water, although soil hydraulic conductivity also interplayed.

  • PDF

Association of a Methanol Extract of Rheum undulatum L. Mediated Cell Death in AGS Cells with an Intrinsic Apoptotic Pathway

  • Hong, Noo Ri;Park, Hyun Soo;Ahn, Tae Seok;Jung, Myeong Ho;Kim, Byung Joo
    • 대한약침학회지
    • /
    • 제18권2호
    • /
    • pp.26-32
    • /
    • 2015
  • Objectives: Rheum undulatum L. has traditionally been used for the treatment of many diseases in Asia. However, its anti-proliferative activity in cancer has still not been studied. In the present study, we investigated the anti-cancer effects of methanol extract of Rheum undulatum L. (MERL) on human adenocarcinoma gastric cell lines (AGS). Methods: To investigate the anti-cancer effect of MERL on AGS cells, we treated the AGS cells with varying concentrations of MERL and performed 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays. Cell cycle analyses, measurements of the mitochondrial membrane potential (MMP), caspase activity assays and Western blots were conducted to determine whether AGS cell death occurred by apoptosis. Results: Treatment with MERL significantly inhibited growth of AGS cells in a concentration dependent manner. MERL treatment in AGS cells leaded to increased accumulation of apoptotic sub G1 phase cells in a concentration dependent manner. In control cultures, 5.38% of the cells were in the sub G1 phase. In MERL treated cells, however, this percentage was significantly increased (9.95% at $70{\mu}g/mL$, 15.94% at $140{\mu}g/mL$, 26.56% at $210{\mu}g/mL$ and 38.08% at $280{\mu}g/mL$). MERL treatment induced the decreased expression of pro-caspase-8 and -9 in a concentration dependent manner, whereas the expression of the active form of caspase-3 was increased. A subsequent Western blot analysis revealed increased cleaved levels of poly (ADP-ribose) polymerase (PARP) protein. Also, treatment with MERL increased the activities of caspase-3 and -9 compared with the control. MERL treatment increased the levels of the pro-apoptotic truncated Bid (tBid) and Bcl2 Antagonist X (Bax) proteins and decreased the levels of the anti-apoptotic B-cell lymphoma 2 (Bcl-2) protein, whose is the stabilization of mitochondria. However, inhibitions of p38, extracellular signal regulated kinases (ERKs) and C-Jun N-terminal kinases (JNK) by MERL treatment did not affect cell death. Conclusion: These results suggest that MERL mediated cell death is associated with an intrinsic apoptotic pathway in AGS cells.