• Title/Summary/Keyword: Cell density

Search Result 3,238, Processing Time 0.029 seconds

Changes of Protein Bodies in Endosperm Cells during Embryo Development of Ginseng (Panax ginseng C.A. Meyer) Seeds - Seeds with Red Seed Coat and Indehiscent Seeds - (인삼(Panax ginseng C.A. Meyer) 종자의 배발달에 따른 배유세포의 단백과립 변화 - 홍숙 및 미개갑 종자 -)

  • 유성철
    • Journal of Plant Biology
    • /
    • v.35 no.1
    • /
    • pp.45-51
    • /
    • 1992
  • The changes of protein bodies in endosperm cells of both seeds with red seed coat and indehiscent seeds of Panax ginseng C.A. Meyer have been investigated in relation to the embryo development. In the early stage of seeds with red seed coat, spherical spherosomes were distributed in endosperm cells. Protein bodies were formed from vacuoles containing the storage protein. Cell organelles were hardly observed in the cytoplasm. In the late stage of the seed with red seed coat, the endosperm was filled with spherosomes and protein bodies. The protein bodies consisted of amorphous inclusions with high electron density or proteinaceous matrix with even electron density. In the seed of in dehiscence, the protein body in endosperm cells contained globoids and protein crystalloids. The globoid of protein body had a electron dense materials. Umbiliform layer was formed between embryo and endosperm. The deformation patterns of endosperm cell wall and the cellulose microfibril were observed in endosperm cells near the umbiliform layer. Umbiliform layer consisted of lipid body and autolyzed cell debris. The protein body of endosperm cell near the umbiliform layer showed various degenerative patterns, and so electron density of proteinaceous matrix was gradually decreased.reased.

  • PDF

High-Density Cultivation of Microalgae using Microencapsulation (Microencapsulation에 의한 미세조류의 고밀도 배양)

  • HAN Young-Ho;LEE Jung-Suck;KWAK Jung-Ki;LEE Eung-Ho;CHO Man-Gi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.2
    • /
    • pp.186-191
    • /
    • 1999
  • The three speices of miroalgae (Chlorella vulgaris, Dunaliella salina and Porphyridium purpureum) were immobilized in Ca-alginate capsules as a basic study for development of economic cultivation process, and then were cultivated in an air-bubble column bioreactor. Under the batch culture of aerobic conditions, the thickness of the capsule membrane and $CO_2$ supply did not affect the growth of the immobilized microalga, Chlorella vulgaris. Cell concentration of immobilized microalgae in the capsule was higher than those of imobilized microalgae in beads and free cells. The cell concentration of microencapsulated Dunaliella salina was greater about 5 times than that of free cells. Based on these results, it is concluded that the application of microencapsulation technology to the culture of microalgae was an effective method for high-density cultivation.

  • PDF

Ginsenoside compound K protects human umbilical vein endothelial cells against oxidized low-density lipoprotein-induced injury via inhibition of nuclear factor-κB, p38, and JNK MAPK pathways

  • Lu, Shan;Luo, Yun;Zhou, Ping;Yang, Ke;Sun, Guibo;Sun, Xiaobo
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.95-104
    • /
    • 2019
  • Background: Oxidized low-density lipoprotein (ox-LDL) causes vascular endothelial cell inflammatory response and apoptosis and plays an important role in the development and progression of atherosclerosis. Ginsenoside compound K (CK), a metabolite produced by the hydrolysis of ginsenoside Rb1, possesses strong anti-inflammatory effects. However, whether or not CK protects ox-LDL-damaged endothelial cells and the potential mechanisms have not been elucidated. Methods: In our study, cell viability was tested using a 3-(4, 5-dimethylthiazol-2yl-)-2,5-diphenyl tetrazolium bromide (MTT) assay. Expression levels of interleukin-6, monocyte chemoattractant protein-1, tumor necrosis factor-${\alpha}$, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 were determined by enzyme-linked immunosorbent assay and Western blotting. Mitochondrial membrane potential (${\Delta}{\Psi}m$) was detected using JC-1. The cell apoptotic percentage was measured by the Annexin V/ propidium iodide (PI) assay, lactate dehydrogenase, and caspase-3 expression. Apoptosis-related proteins, nuclear factor $(NF)-{\kappa}B$, and mitogen-activated protein kinases (MAPK) signaling pathways protein expression were quantified by Western blotting. Results: Our results demonstrated that CK could ameliorate ox-LDL-induced human umbilical vein endothelial cells (HUVECs) inflammation and apoptosis, $NF-{\kappa}B$ nuclear translocation, and the phosphorylation of p38 and c-Jun N-terminal kinase (JNK). Moreover, anisomycin, an activator of p38 and JNK, significantly abolished the anti-apoptotic effects of CK. Conclusion: These results demonstrate that CK prevents ox-LDL-induced HUVECs inflammation and apoptosis through inhibiting the $NF-{\kappa}B$, p38, and JNK MAPK signaling pathways. Thus, CK is a candidate drug for atherosclerosis treatment.

Self-pressurization Effect and PEMFC Performance Improvement Using Metal Foam Compression (금속 폼 압축에 의한 자가 가압 효과 및 PEMFC 성능 개선)

  • Kim, Hyeonwoo;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.618-623
    • /
    • 2022
  • The bipolar plate is a key component of the polymer electrolyte membrane fuel cell (PEMFC) that transfers reactants and electrons, discharges water and heat as by-products, and serves as a mechanical support for the membrane electrode assembly (MEA). Therefore, the flow field structure of the bipolar plate plays an important role in improving fuel cell performance. In this study, PEMFC performance was investigated with copper foams with different compressibility ratios applied to cathode bipolar plates using a 25 cm2 unit cell. The total resistance decreased as the compressibility ratio of the metal foams increased, and, in particular, the charge transfer and mass transfer resistance were significantly improved compared to the serpentine flow field, lowering voltage loss in medium and high current density region. In the case of pressurized air reactant flow with serpentine structure, fuel cell performance was similar to that of a compressed metal foam flow field (S3) up to the medium current density region, but low performance appeared in the high current density region due to flow field structure limitations.

Thin Film Si-Ge/c-Si Tandem Junction Solar Cells with Optimum Upper Sub- Cell Structure

  • Park, Jinjoo
    • Current Photovoltaic Research
    • /
    • v.8 no.3
    • /
    • pp.94-101
    • /
    • 2020
  • This study was trying to focus on achieving high efficiency of multi junction solar cell with thin film silicon solar cells. The proposed thin film Si-Ge/c-Si tandem junction solar cell concept with a combination of low-cost thin-film silicon solar cell technology and high-efficiency c-Si cells in a monolithically stacked configuration. The tandem junction solar cells using amorphous silicon germanium (a-SiGe:H) as an absorption layer of upper sub-cell were simulated through ASA (Advanced Semiconductor Analysis) simulator for acquiring the optimum structure. Graded Ge composition - effect of Eg profiling and inserted buffer layer between absorption layer and doped layer showed the improved current density (Jsc) and conversion efficiency (η). 13.11% conversion efficiency of the tandem junction solar cell was observed, which is a result of showing the possibility of thin film Si-Ge/c-Si tandem junction solar cell.

200hrs Operational Characteristics of the Single Cell in Phosphoric Acid Fuel Cell (인산형 연료전지 단위전지 200시간 운전특성 연구)

  • Song, R.H.;Kim, C.S.;Choi, B.W.;Han, S.O.;Choi, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.73-77
    • /
    • 1991
  • 200hrs operational characteristics of the single cell in phosphoric acid fuel cell was studied. The initial performance of single cells was examined as a function of PTFE content of electrode in the range of 30 to 60 wt.%. The cell with the electrode of 40wt.% PTFE was chosen for the 200hrs operation. The cell voltage decay was found to be about 0.5mV/hr for 200hrs operation. These results of cell performance were discussed as related to the internal resistance and the exchange current density of the cell.

  • PDF

Performance Analysis of Polymer Electrolyte Membrane Fuel Cell by AC Impedance Measurement (교류 임피던스 측정법을 이용한 고분자 전해질 연료전지의 성능특성 분석)

  • Seo, Sang-Hern;Lee, Chang-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.4
    • /
    • pp.283-290
    • /
    • 2009
  • This study focuses on the performance characteristics of polymer electrolyte membrane fuel cell (PEMFC) using the AC impedance technique. The experiment was carried out to investigate the optimal operating conditions of PEMFC such as cell temperature, flow rate, humidified temperature and back-pressure. The fuel cell performance was analyzed by DC electronic-loader with constant voltage mode and expressed by voltage-current density. Additionally, AC impedance was measured to analysis of ohmic and activation loss and expressed by Nyquist plot. The results showed that the cell performance increased with increase of cell temperature, air flow rate, humidified temperature and backpressure. Also, the activation loss decreased as the increase of cell temperature, air flow rate, humidified temperature and backpressure.

The Ultrastructure of Photoreceptor Cells in Frog Retina (개구리 망막에 있는 광수용세포의 미세구조)

  • Kim, Jin-Suk;Jeon, Jin-Seok
    • Applied Microscopy
    • /
    • v.25 no.4
    • /
    • pp.115-123
    • /
    • 1995
  • This study was carried out to observe the functional ultrastructures of photoreceptor cells in frog(Rana catesbeiana) retina using transmission electron microscope. The photoreceptor cells are divided into two types-rod and cone cells-consist of outer and inner segment. The long outer segment of rod cell contains dense stacks of membrane and formed vertical and horizontal folds. The outer segment of cone cell is small, and vertical and horizontal folds are not exist. The electron dense cytoplasm of rod cell contains compact mitochondria, Golgi complexes, and endoplasmic reticula. The inner segment of cone cell shows low electron density and contains a large lipid droplet in the upper part of inner segment. In addition, cone cell contains many mitochondria, Golgi complexes. rough endoplasmic reticula, ribosomes and numerous glycogen particles. It is believed that these ultrastructural characteristics are closely associated with photoreceptive function of photoreceptor cells in frog retina.

  • PDF

Cell Design for Mixed Gas Fuel Cell (혼합가스 주입형 연료전지를 위한 전지 디자인)

  • Park, Byung-Tak;Yoon, Sung Pil
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.860-864
    • /
    • 2005
  • In this study, we fabricated honeycomb type Mixed-Gas Fuel Cell (MGFC) which has advantages of stacking to the axial direction and increasing volume power density. Honeycomb-shaped anode with four channels was prepared by dry pressing method. Two alternative channels were coated with electrolyte and cathode slurry in order to make cathodic reaction sites and the others were filled with partial oxidation (POX) catalyst to increase fuel conversion. Furthermore we employed the sol-gel technique which can increase cell performance and decrease carbon coking.

A Study on Performance Characteristics of PEMFC with Thermal Variation (온도에 따른 고분자 전해질형 연료전지시스템의 출력 특성 연구)

  • Park, Se-Joon;Shin, Young-Sik;Jeong, Seong-Chan;Choi, Jeong-Sik;Cha, In-Su
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.212-214
    • /
    • 2009
  • The polymer electrolyte membrane fuel cell(PEMFC) with the advantages of low-operating temperature, high current density, low cost and volume, fast start-up ability, and suitability for discontinuous operation becomes the most reasonable and attractive power system for transportation vehicle and micro-grid power plant in a household. 200W PEMFC(Polymer electrolyte membrane fuel cell) system applied to middle and small-scaled micro-grid power system was constructed by this study, then the electrical characteristics and diagnosis of the fuel cell were analyzed with thermal variation.

  • PDF