• Title/Summary/Keyword: Cell density

Search Result 3,247, Processing Time 0.037 seconds

Synthesis and Electrochemical Properties of LiFePO4 Cathode Material obtained by Electrospinning Method (전기방사법을 이용한 LiFePO4 양극 활물질의 합성 및 전기화학적 특성)

  • Lee, Seung-Byung;Cho, Seung-Hyun;Park, Sun-Il;Lee, Wan-Jin;Lee, Yun-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.268-272
    • /
    • 2008
  • $LiFePO_4$ material was synthesized by electrospinning method to obtain optimal particle size($50{\sim}100\;nm$) without carbon coating or ball milling. This material showed an orthorthombic structure with Pnma space group without any impurities, such as FeP or $Fe_2P$, in the XRD pattern. The particle morphology and particle shape were observed by SEM analysis. Li/$LiFePO_4$ cell showed a high initial discharge capacity of 135 mAh/g, at current density of $0.1\;mA/cm^2$ with a cut-off voltage of 2.8 to 4.0V. This cell exhibited a perfect cycle performance over 99.9% cycle retention rate up to 50 cycles.

Gene Expression Profiling of Acetaminophen Induced Hepatotoxicity in Mice

  • Suh, Soo-Kyung;Jung, Ki-Kyung;Jeong, Youn-Kyoung;Kim, Hyun-Ju;Lee, Woo-Sun;Koo, Ye-Mo;Kim, Tae-Gyun;Kang, Jin-Seok;Kim, Joo-Hwan;Lee, Eun-Mi;Park, Sue-Nie;Kim, Seung-Hee;Jung, Hai-Kwan
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.4
    • /
    • pp.236-243
    • /
    • 2006
  • Microarray analysis of gene expression has become a powerful approach for exploring the biological effects of drugs, particularly at the stage of toxicology and safety assessment. Acetaminophen (APAP) has been known to induce necrosis in liver, but the molecular mechanism involved has not been fully understood. In this study, we investigated gene expression changes of APAP using microarray technology. APAP was orally administered with a single dose of 50 mg/kg or 500 mg/kg into ICR mice and the animals were sacrificed at 6, 24 and 72 h of APAP administration. Serum biochemical markers for liver toxicity were measured to estimate the maximal toxic time and hepatic gene expression was assessed using high-density oligonucleotide microarrays capable of determining the expression profile of >30,000 well-substantiated mouse genes. Significant alterations in gene expression were noted in the liver of APAP-administered mice. The most notable changes in APAP-administered mice were the expression of genes involved in apoptosis, cell cycle, and calcium signaling pathway, cystein metabolism, glutatione metabolism, and MAPK pathway. The majority of the genes upregulated included insulin-like growth factor binding protein 1, heme oxygenase 1, metallothionein 1, S100 calcium binding protein, caspase 4, and P21. The upregulation of apoptosis and cell cycle-related genes were paralleled to response to APAP. Most of the affected gene expressions were returned to control levels after 72 hr. In conclusion, we identified potential hepatotoxicity makers, and these expressions profiling lead to a better understanding of the molecular basis of APAP-induced hapatotoxicity.

Effect of Feeding Transgenic Cottonseed vis-à-vis Non-transgenic Cottonseed on Haematobiochemical Constituents in Lactating Murrah Buffaloes

  • Singh, Maha;Tiwari, D.P.;Kumar, Anil;Kumar, M. Ravi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1732-1737
    • /
    • 2003
  • An experiment was conducted to investigate the effect of feeding transgenic cottonseed (Bt.) vis-a-vis non-transgenic (non-Bt.) cottonseed on blood biochemical constituents in lactating Murrah buffaloes. Twenty Murrah buffaloes in mid-lactation were divided into 2 groups of 10 each. Animals of group I were fed with 39.5% non-transgenic cottonseed in concentrate mixture while the same percentage of transgenic (Bt.) cottonseed was included in the concentrate mixture fed to the animals of group II. Animals of both groups were fed with concentrate mixture to support their milk production requirements. Each buffalo was also offered 20 kg mixed green fodder (oats and berseem) and wheat straw ad libitum. The experimental feeding trial lasted for 35 days. There was no significant difference in the dry matter intake between the two groups of buffaloes. All the buffaloes gained body weight, however, the differences were non significant. Total erythrocyte count, hemoglobin content and packed cell volume were $9.27{\pm}0.70${\times}10^6/{\mu}l$, $13.01{\pm}0.60gdl$ and $34.87{\pm}1.47%$, respectively in group I with the corresponding figures of $8.88{\pm}0.33$, $12.99{\pm}0.52$ and $31.08{\pm}1.52$ in group II. The values of total erythrocyte count, haemoglobin content and packed cell volume did not differ significantly between the two groups of buffaloes. The concentration of plasma glucose, serum total proteins, albumin, globulin, triglycerides and high density lipoprotein were non significantly higher in buffaloes fed non-transgenic cottonseed than in buffaloes fed transgenic cottonseed. The cholesterol concentration was significantly (p<0.01) higher in buffaloes of group I ($136.84{\pm}8.40mg/dl$) than in buffaloes of group II ($105.20{\pm}1.85mg/dl$). The serum alkaline phosphotase, glutamic-oxaloacetate transaminase and glutamic-pyruate transaminase activities did not differ significantly between two groups of buffaloes. However, serum glutamic-pyruate transaminase activity was considerably high in buffaloes fed nontransgenic cottonseed as compared to buffaloes fed transgenic cottonseed. Bt. proteins in serum samples of animals of group II were not detected after 35 days of feeding trial. It was concluded that transgenic cottonseed and non-transgenic cottonseed have similar nutritional value without any adverse effects on health status of buffaloes as assessed from haematobiochemical constituents.

Development of High Performance Nanocomposites using Functionalized Plant Oil Resins (식물성오일 레진을 이용한 고기능성 나노 복합재료의 개발)

  • Han, Song-Yi;Jung, Young-Hee;Oh, Jeong-Seok;Kaang, Shin-Young;Hong, Chang-Kook
    • Elastomers and Composites
    • /
    • v.47 no.1
    • /
    • pp.2-8
    • /
    • 2012
  • In this study, in order to develop renewable bio-based nanocomposites, multi-functional nanocomposites from soybean resins (AESO, MAESO) and nanoclay were prepared. Photoelectrodes for environmental friendly dye-sensitized solar cell using soybean resin were also prepared. Organo-modified nanoclay was directly dispersed in functionalized soybean resins after mixing with styrene as a comonomer and radical initiator was used to copolymerize the nanocomposites. The observed morphology was a mixture of intercalated/exfoliated structure and the physical properties were improved by adding nanoclay. A nanocomposite using MAESO, which added COOH functional group to the soybean resin, showed better dispersibility than AESO composites. Ultrasonic treatment of the nanocomposites also improved the physical properties. Nanoporous $TiO_2$ photoelectrode was also prepared using soybean resins as a binder, after acid-treatment of $TiO_2$ surface using nitric acid. Dye-sensitized solar cells were prepared after adsorbing dye molecules on it. The $TiO_2$ photoelectrode prepared using soybean binder had high current density because of increased surface area by improved dispersibility. The photoelectrochemical properties and conversion efficiency of the solar cell were significantly improved using the soybean binder.

Antimicrobial Effects of Photodynamic Therapy using Photofrin Against Staphylococcus aureus and Staphylococcus epidermidis (포토프린을 이용한 황색포도알균과 표피포도알균에 대한 광역학 치료의 항균효과)

  • Kwon, Pil-Seung
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.2
    • /
    • pp.314-321
    • /
    • 2013
  • Photodynamic therapy(PDT) has been recommended as an alternative therapy for various diseases including microbial infection. The aim of the present study is to evaluate the antimicrobial effect of PDT using a photofrin and home made 630 nm Light emitting diode(LED) against Staphylococci. To examine the antimicrobial effect of photofrin-mediated PDT against Staphylococcus aureus and Staphylococcus epidermidis colony forming units(CFU) quantification, and bacterial viability using flow cytometry were formed. The CFU quantification results of S. aureus and S. epidermidis were 1 cfu/ml and 16 cfu/ml of average, respectively, after PDT application with photofrin of $50{\mu}g/m{\ell}$ and 630 nm LED and energy density of $18J/cm^2$. In addition, S. aureus and S. epidermidis isolates yielded forward-scatter (FSC) and fluorescence intensity (FI) differences on flow cytometry (FCM) after PDT. S. aureus and S. epidermidis cell size(FSC) increased 8.96% and 5.55% respectively, after PDT. Also the numbers of dead cell of S. aureus and S. epidermidis were a 39% and 61% incerased. These results suggest that photofrin-mediated PDT can be an effective alternative treatment for antibacterial therapy.

Electrochemical Characteristics of EDLC with various Organic Electrolytes (유기전해질에 따른 EDLC의 전기화학적 특성)

  • Yang Chun-Mo;Lee J.K.;Cho W.I.;Cho B.W.;Rim Byung-O
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.3
    • /
    • pp.113-117
    • /
    • 2001
  • Specific capacitance and charge-discharge rate of EDLC using activated carbon electrode were affected by the compositions of electrolytes, the conditions of charge-discharge and physical properties of activated carbon materials. The activated carbon electrode was prepared by dip coating method. Charge-discharge test and electrochemical experiments were carried out for various kinds of organic electrolytes. Effects of charge and discharge current density on the specific capacitance were studied. Characteristics of leakage current, self-discharge and time-voltage curves in optimum conditions of organic electrolytes were compared with conventional $1M-Et_4NBF_4/PC$ electrolyte. The EDLC using MSP-20(specific surface area: $2000m^2/g$) electrode and $1M-LiPF_6/PC-DEC(1:1)$ was exhibited th highest specific capacitance of 130F/g and low polarization resistances. The EDLC using MSP-20 electrode at $1M-LiPF_6/PC-DEC(1:1)$ was small leak current of 0.0004A for 15min, long voltage retention of 0.8V after 100h and linear time-voltage curves with small IR-drop.

Myo-inositol increases the plating efficiency of protoplast derived from cotyledon of cabbage (Brassica oleracea var. capitata)

  • Jie, Eun-Yee;Kim, Suk-Weon;Jang, Hye-Rim;In, Dong-Su;Liu, Jang-Ryol
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.69-76
    • /
    • 2011
  • This study describes the effect of myo-inositol on sustained cell division and plant regeneration from cotyledon-derived protoplast of cabbage (Brassica oleracea var. capitata). Freshly isolated protoplasts were cultured in modified Murashige and Skoog (MS) medium removed ammonia ions and containing $0.4\;mg\;l^{-1}$ thiamine HCl, $100\;mg\;l^{-1}$ myo-inositol, $2\;mgl^{-1}$ 2,4-D, $0.5\;mgl^{-1}$ BA, $30\;gl^{-1}$ sucrose and several concentrations of myo-inositol (2, 4, 6, 8, 10% (w/v)) as an osmotic stabilizer. After 3 weeks of culture in the dark at $25^{\circ}C$, the plating efficiency of cabbage protoplasts reached to $22.5{\pm}2.9%$ when cultured in modified MS medium supplemented with $2\;mgl^{-1}$ 2,4-D, $0.5\;mgl^{-1}$ BA, $30\;gl^{-1}$ sucrose and 8% (w/v) of myo-inositol at a density of $2{\times}10^5$ protoplasts/ml. Rapidly growing cell colonies after 3 weeks of culture were transferred to the same culture medium removed osmoticum. To induce shoot regeneration from calluses, calluses with about 2 mm in diameter were transferred to the MS medium containing $2\;mgl^{-1}$ BA and $0.5\;mgl^{-1}$ NAA. After further three weeks of incubation onto the medium in the light, green shoots were formed on the surface of calluses at a frequency of 30%. Upon transfer to half-strength MS basal medium, roots were formed onto the bottom of regenerated shoots without auxin treatments. These regenerated plantlets were successfully acclimatized to soil transfer, grown to normal mature plants. The cabbage protoplast culture system established in this study could be applied for production of somatic hybrids or cybrids by asymmetric protoplast fusion and mass proliferation of elite somatic clones of cabbage.

EffeCt of tricalcium phosphate (TCP) as a scaffold during bone grafting using cultured periosteum-derived cells in a rat calvarial defect model (두개결손부 모델에서 배양된 골막유래세포를 이용한 골이식 시 지지체로서 TCP의 효과)

  • Shim, Kyung-Mi;Kim, Se-Eun;Kim, Jong-Choon;Bae, Chun-Sik;Choi, Seok-Hwa;Kang, Seong-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • The periosteum contains multipotent cells that can differentiate into osteoblasts and chondrocytes. Cultured periosteum-derived cells (PDCs) have an osteogenic capacity. The purpose of this study was to evaluate the interaction of PDCs with bone graft biomaterial. After cell isolation from the calvarial periosteum of Sprague-Dawley rats, cultured PDCs were placed in critical-sized calvarial defects with beta-tricalcium phosphate (${\beta}$-TCP). All rats were sacrificed 8 weeks after bone graft surgery, and the bone regenerative ability of bone grafting sides was evaluated by plain radiography, micro-computed tomography (CT), and histological examination. PDCs grafted with ${\beta}$-TCP displayed enhanced calcification in the defect site, density of regenerated bone and new bone formation within the defect and its boundaries. Furthermore, these PDCs more efficiently regenerated new bone as compared to grafted ${\beta}$-TCP only. The results suggest that cultured PDCs have the potential to promote osteogenesis in bone defects.

Functional characterization of primary culture cells grown in hormonally defined, serum-free medium and serum-supplemented medium (호르몬 한정배지를 이용한 세포 초대배양계의 확립)

  • Han, Ho-jae;Kang, Ju-won;Park, Kwon-moo;Lee, Jang-hern;Yang, Il-suk
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.3
    • /
    • pp.551-563
    • /
    • 1996
  • This study investigated the properties of primary cultured proximal tubule cells in hormonally defined(insulin, transferrin, and hydrocortisone), serum-free medium or 10% serum-supplemented medium. The growth rate of the primary cultured proximal tubule cells was lower in the hormonally defined, serum-free medium than in the 10% serum- supplemented medium(p < 0.05), while the activities of brush border marker enzymes, alkaline phosphatase(AP), leucine aminopeptidase(LAP), and y-glutamyl transpeptidase(${\gamma}$-GTP) were increased(p < 0.05). The activities of these enzymes, however, decreased with the lapse of incubation time to 50-70% after 6 days culture compared to those of the freshly-prepared proximal tubules. The enzymatic activities of the primary cultured proximal tubul cells on 6, 9, 12, and 15 days of culture were significantly increased in the hormonally defined, serum-free medium compared to the 10% serum-supplemented medium(p < 0.05). The functional differentiation of the primary culture was examined by observing multicellular domes of the confluent monolayer, which is indicative of transepithelial solute transport. The dome formation by the proximal tubule cultures occurred at a higher frequency in the hormonally defined, serum-free medium than in the 10% serum-supplemented medium(p < 0.05). Upon electron microscopic examination, an increased density of the brush border was observed in the hormonally defined, serum-free medium compared to the cells grown in 10% serum-supplemented medium. The activities of $Na^+$glucose cotransporter($^{14}C$-a-MG uptake), $Na^+$phosphate cotransportere($^{32}P$ uptake) and $Na^+$ transporter($^{22}Na^+$ uptake) in the brush border membrane, and of $Na^+/K^+$-ATPase($^{86}Rb$ uptake) in the basolateral membrane were significantly stimulated in the hormonally defined, serum-free medium than in 10% serum-supplemented medium(p < 0.05). In conclusion, the primary cultured proximal tubule cells grown in the hormonally defined, serum-free medium demonstrated a slower growth rate, but the functions of cell were enhanced.

  • PDF

Quorum Quenching Enzymes and Biofouling Control (정족수 제어효소와 biofouling 제어)

  • Jeon, Young Jae;Jeong, Won-Geom;Heo, Hye-Sook
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1487-1497
    • /
    • 2016
  • Bacterial cell to cell communication strategies called quorum sensing (QS) using small diffusible signaling molecules (auto-inducers) govern the expression of various genes dependent on their population density manner. As a consequence of synthesis and response to the signaling molecules, individual planktonic cells synchronized group behaviors to control a diverse array of phenotypes such as maturation of biofilm, production of extra-polymeric substances (EPS), virulence, bioluminescence and antibiotic production. Many studies indicated that biofilm formations are associated with QS signaling molecules such as acyl-homoserine lactones (AHLs) mainly used by several Gram negative bacteria. The biofilm maturation causes undesirable biomass accumulation in various surface environments anywhere water is present called biofouling, which results in serious eco-technological problems. Numerous molecules that interfere the bacterial QS called quorum quenching (QQ), have been discovered from various microorganisms, and their functions and mechanisms associated with QS have also been elucidated. To resolve biofouling problems related to various industries, the novel approach based on QS interference has been emerged attenuating multi-drug resisting bacteria appearance and environmental toxicities, which may provide potential advantages over the conventional anti-biofouling approaches. Therefore this paper presents recent information related to bacterial quorum sensing system, quorum quenching enzymes that can control the QS signaling, and lastly discuss the anti-biofouling approaches using the quorum quenching.