• Title/Summary/Keyword: Cell density

Search Result 3,247, Processing Time 0.031 seconds

Characteristics of Unit Cell for SOFC (SOFC의 단위전지 특성평가)

  • 김귀열;엄승욱;문성인
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.80-83
    • /
    • 1996
  • Among the fuel cell system, solid oxide fuel eels is constructed of ceramics, so stack construction is simple , power density is very high, and there is no corrosion problems. The purpose of this research is investigate the characteristics of unit cell for SOFC .

  • PDF

Lipoprotein Lipase-Mediated Uptake of Glycated LDL

  • Koo, Bon-Sun;Lee, Duk-Soo;Yang, Jeong-Yeh;Kang, Mi-Kyung;Sohn, Hee-Sook;Park, Jin-Woo
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.148-154
    • /
    • 2000
  • The glycation process plays an important role in accelerated atherosclerosis in diabetes, and the uptake of atherogenic lipoproteins by macrophage in the intima of the vessel wall leads to foam cell formation, an early sign of atherosclerosis. Besides the lipolytic action on the plasma triglyceride component, lipoprotein lipase (LPL) has been reported to enhance the cholesterol uptake by arterial wall cells. In this study, some properties of LPL-mediated low-density lipoprotein (LDL) uptake and the effect of LDL glycation were investigated in RAW 264.7 cell, a murine macrophage cell line. In the presence of LPL, $^{125}I$-LDL binding to RAW 264.7 cells was increased in a dose-dependent manner. At concentrations greater than $20\;{\mu}g/ml$ of LPL, LPL-mediated LDL binding was increased about 17-fold, achieving saturation. Without LPL, both very low-density lipoprotein (VLDL) and high-density lipoprotein (HDL) were ineffective in blocking the binding of $^{125}I$-LDL to Cells. However, LPL-enhanced LDL binding was inhibited about 50% by the presence of VLDL, while no significant effect was observed with HDL. Heat inactivation of LPL caused a 30% decrease of LDL binding. In the presence of LPL, the cells took up 40% of cell-bound native LDL. No significant difference was observed in cell binding between native and glycated LDL. However, the uptake of glycated LDL was significantly greater than that of native LDL, reaching to 70% of the total cell bound glycated LDL. These results indicate that LPL can cause the significant enhancement of LDL uptake by RAW 264.7 cells and the enhanced uptake of glycated LDL in the presence of LPL might play an important role in the accelerated atherogenesis in diabetic patients.

  • PDF

Cell Age Optimization for Hydrogen Production Induced by Sulfur Deprivation Using a Green Alga Chlamydomonas reinhardtii UTEX 90

  • KIM , JUN-PYO;KANG, CHANG-DUK;SIM, SANG-JUN;KIM, MI-SUN;PARK, TAI-HYUN;LEE, DONG-HYUN;KIM, DUK-JOON;KIM, JI-HEUNG;LEE, YOUNG-KWAN;PAK, DAE-WON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.131-135
    • /
    • 2005
  • Under sulfur deprived conditions, PS II and photosynthetic $O_2$ evolution by Chlamydomonas reinhardtii UTEX 90 are inactivated, resulting in shift from aerobic to anaerobic condition. This is followed by hydrogen production catalyzed by hydrogenase. We hypothesized that the photosynthetic capacity and the accumulation of endogenous substrates such as starch for hydrogen production might be different according to cell age. Accordingly, we investigated (a) the relationships between hydrogen production, induction time of sulfur deprivation, increase of chlorophyll after sulfur deprivation, and residual PS II activity, and (b) the effect of initial cell density upon sulfur deprivation. The maximum production volume of hydrogen was 151 ml $H_2$/l with 0.91 g/l of cell density in the late-exponential phase. We suggest that the effects of induction time and initial cell density at sulfur deprivation on hydrogen production, up to an optimal concentration, are due to an increase of chlorophyll under sulfur deprivation.

A Study of Coverage Extension and Minimum Deployment Cost in NBTC and WBTC Structures based WiBro System Using Multi-hop Relay (NBTC와 WBTC 구조를 갖는 WiBro 시스템에서 멀티홉 중계기를 이용한 커버리지 확장과 최소 설치비용 연구)

  • Kim, Se-Jin;Kim, Seung-Yeon;Lee, Byung-Bog;Ryu, Seung-Wan;Lee, Hyong-Woo;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10B
    • /
    • pp.911-918
    • /
    • 2008
  • In this paper, we propose new cell structures using multi-hop Relay Station(RS) based on IEEE802.16j in Narrow-Beam Trisector Cell (NBTC) and Wide-Beam Trisector Cell (WBTC), which are two methods for cell sectorization using 3-sector directional antennas. Then, we analyze our proposed structures compared with the existing system which does not use any RS about the numbers of optimized Base Station (BS) and multi-hop relay, the extended BS coverage, and the deployment cost according to the traffic density using optimization model. According to the results, we know the reduction of total deployment cost of the proposed systems and that WBTC is suitable when the traffic density is high and NBTC is suitable when the traffic density is low in our proposed multi-hop based NBTC and WBTC structures.

The Lithium Ion Battery Technology

  • Lee, Ki-Young
    • Carbon letters
    • /
    • v.2 no.1
    • /
    • pp.72-75
    • /
    • 2001
  • The performance of Li-ion system based on $LiCoO_2$ and Graphite is well optimized for the 3C applications. The charge-discharge mode, the manufacturing process, the cell performance and the thermal reactions affecting safety has been explained in the engineering point of view. The energy density of the current LIB system is in the range of 300~400 Wh/l. In order to achieve the energy density higher than 500 Wh/l, the active materials should be modified or changed. Adopting new high capacity anode materials would be effective to improve energy density.

  • PDF

Cultivation of the Hyperthermophilic Archaeon Sulfolobus solfataricus in Low-Salt Media

  • Park, Chan-Beum;Lee, Sun-Bok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.21-25
    • /
    • 1999
  • Two low-salt complex media, bactopeptone and desalted yeast extract, were used for high density cultivation of the hyperthermophilic archaeon Sulfolobus solfataricus (DSM 1617). Bactopeptone, which has low mineral ion content among various complex media, was good for cell growth in batch cultures; the maximal cell density in bactopeptone was comparable to that in yeast extract. However, cell growth was rather poor when bactopeptone was added by the fed-batch procedure. Since several vitamins are deficient in abctopeptone, the effect of vitamins on cell growth was examined. Among the vitamins tested, pyridoxine was found to improve the growth rate of S. solfataricus. To reduce the growth inhibition caused by mineral ions, yeast extract was dialyzed against distilled water and then fed-batch cultures were carried out using a fed medium containing desalted yeast extract. Although the concentrations of mineral ions in yeast extract were significantly lowered by the dialysis whether low molecular weight solutes in yest extract are crucial for cell growth, we investigated the effect of trehalose, a most abundant compatible solute in yeast extract, on the growth pattern. Cell densities were increased and the length of the lag phase was markedly shortened by the presence of trehalose, indicating that trehalose plays an important role in the growth of S. solfataricus.

  • PDF

SIMULATION OF UNIT CELL PERFORMANCE IN THE POLYMER ELECTROLYTE MEMBRANE FUEL CELL

  • Kim, H.G.;Kim, Y.S.;Shu, Z.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.867-872
    • /
    • 2006
  • Fuel cells are devices that convert chemical energy directly into electrical energy. Owing to the high efficiency of the fuel cells, a large number of research work have been done during these years. Among many kinds of the fuel cells, a polymer electrolyte membrane fuel cell is such kind of thing which works under low temperature. Because of the specialty, it stimulated intense global R&D competition. Most of the major world automakers are racing to develop polymer electrolyte membrane fuel cell passenger vehicles. Unfortunately, there are still many problems to be solved in order to make them into the commercial use, such as the thermal and water management in working process of PEMFCs. To solve the difficulites facing the researcher, the analysis of the inner mechanism of PEMFC should be implemented as much as possible and mathematical modeling is an important tool for the research of the fuel cell especially with the combination of experiment. By regarding some of the assumptions and simplifications, using the finite element technique, a two-dimensional electrochemical mode is presented in this paper for the further comparison with experimental data. Based on the principals of the problem, the equations of electronic charge conservation equation, gas-phase continuity equation, and mass balance equation are used in calculating. Finally, modeling results indicate some of the phenomenon in a unit cell, and the relationships between potential and current density.

A Study on the Extrusion Foaming of Polypropylene (폴리프로필렌의 압출발포 특성에 관한 연구)

  • 황대영;한갑동;홍다윗;이규일;이기윤
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.538-544
    • /
    • 2000
  • The characteristics of cell growth and foamed cell structures of PP were investigated by a continuous foaming process. The operating parameters were the contents of blowing agent and nucleating agent, nucleating agent contents, die temperatures and die dimensions. The foaming cells grew without collapse at less than 14.5 wt% of blowing agent, isopentane. But the cells were collapsed when the blowing agent content was more than 14.5 wt%. The foam density dramatically decreased when a very small amount of the nucleating agent, 1 wt%, was added. After the nucleating agent was added, the cell's weight plummeted to one-seventh of its previous weight. Stable foam cell structures were formed at the die temperature of 17$0^{\circ}C$. However, the effects of the pressure drop rate on the cell morphology were not serious.

  • PDF

Computational Analysis of Heat and Mass Transfer in a Planar-type Solid Oxide Fuel Cell (저온 평판형 고체산화물 연료전지 내부 열 및 물질전달 현상에 대한 전산해석)

  • Jeong, Hee-Seok;Cha, Hoon;Sohn, Jeong-Lak;Ro, Sung-Tack
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.648-654
    • /
    • 2005
  • The performance prediction of a planar-type solid oxide fuel ceil is conducted by a computational analysis. The transport processes are formulated with the help of a simplified treatment of heat generation by the electrochemical reaction. From the result of the computational analysis, it is shown that the electrochemical reaction is closely related to the transport phenomena inside a solid oxide fuel cell. Transport phenomena including heat and mass transfer have influence on the distribution of local current density and as a result, on the performance characteristics of the fuel cell. Computational analysis is also extended to the parametric study to investigate the performance behavior of the fuel cell with different amount of supplied fuel flow rates. It is also demonstrated that the mathematical formulation and computational procedures proposed in this study can be applied to prove the importance of the specific TPB(Three-Phase-Boundary) area in the manufacturing process of electrodes in a solid oxide fuel cell.

  • PDF