Browse > Article

Cell Age Optimization for Hydrogen Production Induced by Sulfur Deprivation Using a Green Alga Chlamydomonas reinhardtii UTEX 90  

KIM , JUN-PYO (Department of Chemical Engineering, Sungkyunkwan University)
KANG, CHANG-DUK (School of Chemical Engineering, Seoul National University)
SIM, SANG-JUN (Department of Chemical Engineering, Sungkyunkwan University)
KIM, MI-SUN (Biomass Research Team, Korea Institute of Energy Research)
PARK, TAI-HYUN (School of Chemical Engineering, Seoul National University)
LEE, DONG-HYUN (Department of Chemical Engineering, Sungkyunkwan University)
KIM, DUK-JOON (Department of Chemical Engineering, Sungkyunkwan University)
KIM, JI-HEUNG (Department of Chemical Engineering, Sungkyunkwan University)
LEE, YOUNG-KWAN (Department of Chemical Engineering, Sungkyunkwan University)
PAK, DAE-WON (Water Environment and Remediation Research Center, Korea Institute of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.1, 2005 , pp. 131-135 More about this Journal
Abstract
Under sulfur deprived conditions, PS II and photosynthetic $O_2$ evolution by Chlamydomonas reinhardtii UTEX 90 are inactivated, resulting in shift from aerobic to anaerobic condition. This is followed by hydrogen production catalyzed by hydrogenase. We hypothesized that the photosynthetic capacity and the accumulation of endogenous substrates such as starch for hydrogen production might be different according to cell age. Accordingly, we investigated (a) the relationships between hydrogen production, induction time of sulfur deprivation, increase of chlorophyll after sulfur deprivation, and residual PS II activity, and (b) the effect of initial cell density upon sulfur deprivation. The maximum production volume of hydrogen was 151 ml $H_2$/l with 0.91 g/l of cell density in the late-exponential phase. We suggest that the effects of induction time and initial cell density at sulfur deprivation on hydrogen production, up to an optimal concentration, are due to an increase of chlorophyll under sulfur deprivation.
Keywords
Hydrogen production; Chlamydomonas reinhardtii; sulfur deprivation; cell growth stage;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 14  (Related Records In Web of Science)
연도 인용수 순위
1 Hase, E., Y. Morimura, S. Mihara, and H. Tamiya. 1958. The role of sulfur in the cell division of Chlorella. Arch. Mikrobiol. 31: 87- 95   DOI
2 Kim, J. R, Y. K. Oh. Y. J. Yoon, E. Y. Lee, and S. H. Park. 2003. Oxygen sensitivity of carbon monoxide-dependent hydrogen production activity in Citrohacter sp. J. Microbiol, Biotechnol. 13: 717-724
3 Lee, J. H., J. S. Lee, C. S. Shin, S. C. Park, and S. W. Kim. 2000. Effects of NO and $SO_2$ on growth of highly-$CO_2$-tolerant microalgae. J. Microbiol. Biotechnol. 10: 338- 343   과학기술학회마을
4 Melis, A., L. Zhang, M. Forestier, M. L. Ghirardi, and M. Seibert. 2000. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol. 122: 127- 135   DOI   ScienceOn
5 Melis, A. 2002. Green alga hydrogen production: Progress, challenges and prospects. Int. J. Hydrogen Energy 27: 1217-1228   DOI   ScienceOn
6 Harris, E. H. 1989. The Chlamydomonas Sourcebook, pp. 607- 608. Academic Press, Inc., San Diego, California, U.S.A.
7 Gaffron, H. and J. Rubin. 1942. Fermentative and photochemical production of hydrogen in algae. J. Gen. Physiol. 26: 219- 240   DOI
8 Hopkins, W. G. and N. P. A. Winer. 2004. Introduction to Plant Physiology. 3rd Ed. pp. 63- 166. John Wiley & Sons, Inc., Hoboken, New Jersey, U.S.A.
9 Wykoff, D. D., J. P. Davies, A. Melis, and A. R. Grossman. 1998. The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol. 117: 129- 139   DOI   ScienceOn
10 Ghirardi, M. L., L. Zhang, J. W. Lee, T. Flynn, M. Seibert, E. Greenbaum, and A. Melis. 2000. Microalgae: A green source of renewable $H_2$. Trends Biotechnol. 18: 506- 511   DOI   ScienceOn
11 Zhang, L., T. Happe, and A Melis. 2002. Biochemical and morphological characterization of sulfur-deprived and $H_{2}-producing$ Chlamydomonas reinhardtii (green alga). Planta 214: 552- 561   DOI   ScienceOn
12 Lee, K. Y. and C. K. Lee. 2002. Nitrogen removal from wastewaters by microalgae without consuming organic carbon sources. J. Microbiol. Biotechnol. 12: 979- 986   과학기술학회마을
13 Kosourov, S., A. Tsygankov, M. Seibert, and M. L. Ghirardi. 2002. Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters. Biotechnol. Bioeng. 78: 731-740   DOI   ScienceOn
14 Pandey, V. and L. C. Rai. 2002. Interactive effects of UV-B and pesticides on photosynthesis and nitrogen fixation of Anabaena doliolum. J. Microbiol. Biotechnol. 12: 423- 430   과학기술학회마을
15 Das, D. and V. Nejat. 2001. Hydrogen production by biological processes: A survey of literature. Int. J. Hydrogen Energy 26: 13- 28   DOI   ScienceOn
16 Hirokawa, T., M. Hata, and H. Taketa. 1982. Correlation between the starch level and the rate of starch synthesis during the development cycle of Chlorella ellipsoidea. Plant Cell Physiol. 23: 813- 820
17 Rai, L. C. H. D. Kumar, F. H. Mohn, and C. J. Soeder. 2000. Services of algae to the environment. J. Microbiol. Biotechnol. 10: 119- 136   과학기술학회마을
18 Tsygankov, A., S. Kosourov, M. Seibert, and M. L. Ghirardi. 2002. Hydrogen photoproduction under continuous illumination by sulfur-deprived, synchronous Chlamydomonas reinhardtii cultures. Int. J. Hydrogen Energy 27: 1239- 1244   DOI   ScienceOn