• Title/Summary/Keyword: Cell delivery

Search Result 517, Processing Time 0.021 seconds

Effect of Specific Interaction of Multi-Ligands on the Specific Interaction between Particle and Cell (멀티 리간드의 특이적 상호작용이 입자-세포간 상호작용에 미치는 영향)

  • Yoon, Jung Hyun;Lee, Sei Young
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.94-101
    • /
    • 2022
  • Recent advancement of micro/nano technology enables the development of diverse micro/nano particle-based delivery systems. Due to the multi-functionality and engineerability, particle-based delivery system are expected to be a promising method for delivery to the target cell. Since the particle-based delivery system should be delivered to the various kinds of target cell, including the cardiovascular system, cancer cell etc., it is frequently decorated with multiple kinds of targeting molecule(s) to induce specific interaction to the target cell. The surface decorated molecules interact with the cell surface expressed molecule(s) to specifically form a firm adhesion. Thus, in this study, the probability of adhesion is estimated to predict the possibility to form a firm adhesion for the multi-ligand decorated particle-based delivery system.

Cell-laden Gelatin Fiber Contained Calcium Phosphate Biomaterials as a Stem Cell Delivery Vehicle for Bone Repair (세포 함유 젤라틴 파이버 응용을 통한 골 재생 유도용 인산칼슘 생체재료 세포 탑재 연구)

  • Kim, Seon-Hwa;Hwang, Changmo;Park, Sang-Hyug
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.61-70
    • /
    • 2022
  • Natural and synthetic forms of calcium phosphate cement (CPC) have been widely used in bone repair and augmentation. The major challenge of injectable CPC is to deliver the cells without cell death in order to regenerate new bone. The study objective was to investigate for the potential of stem cell-laden gelatin fibers containing injectable, nanocrystalline CPC to function as a delivery system. Gelatin noddle fiber method was developed to delivered cells into nCPC. Experimental groups were prepared by mixing cells with nCPC, mixing cell-laden gelatin fibers with nCPC and mixing cell-laden gelatin fibers containing BMP-2 with nCPC. Media diffusion test was conducted after dissolving the gelatin fibers. SEM examined the generated channels and delivered cell morphology. Fibers mixed with nCPC showed physical setting and hardening within 20 min after injection and showed good shape maintenances. The gelatin fibers mixed nCPC group had several vacant channels generated from the dissolved gelatin. Particularly, proliferation and attachment of the cells were observed inside of the channels. While live cells were not observed in the cell mixed nCPC group, cells delivered with the gelatin fibers into the nCPC showed good viability and increased DNA content with culture. Cell-laden gelatin fiber was a novel method for cell delivery into nCPC without cell damages. Results also indicated the osteogenic differentiation of gelatin fiber delivered cells. We suggest that the cell-laden gelatin fibers mixed with nCPC can be used as an injectable cell delivery vehicle and the addition of BMP-2 to enhances osteogenesis.

Reduction of Oncogene Expression in Cancer Cells Using siRNA Delivery Systems

  • Kim, Eun-Joong;Kim, Young-Bong;Choi, Han-Gon;Shim, Chang-Koo;Oh, Yu-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.5
    • /
    • pp.343-348
    • /
    • 2005
  • Recently, siRNA has been emerging as new therapeutic agents for various diseases such as cancers and infectious diseases. However, the evaluation for delivery systems for siRNA has not been fully done. In this study, we designed and delivered siRNA of oncogenic E6 and E7 proteins to several cell lines and tested the delivery efficiencies of various cationic nonviral delivery vectors. Of cationic delivery systems tested in this study, lipid-based Lipofectamine revealed higher delivery efficiency of siRNA to cervical cancer cell line, SiHa, compared to other delivery systems. Notably, the polyethylenimine, which showed the comparable delivery efficiencies in plasmid DNA, did not show significant delivery of siRNA in cervical cancer cells. These results indicate that the mechanisms involved in siRNA delivery might be different from those in plasmid DNA delivery, and that cationic lipid-based delivery vehicles deliver siRNA with higher efficiency to intracellular target sites.

Atomic Force Microscopy(AFM) based Single Cell Manipulation and High Efficient Gene Delivery Technology (원자간력 현미경을 이용한 단일세포 조작 및 고효율 유전자 도입기술)

  • Han, Sung-Woong;Nakamura, Chikashi;Miyake, Jun;Kim, Woo-Sik;Kim, Jong-Min;Chang, Sang-Mok
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.538-545
    • /
    • 2009
  • The principle and application of a scanning probe microscopy(SPM) are reviewed briefly, and a low-invasive single cell manipulation and a gene delivery technique using an etched atomic force microscopy(AFM) probe tip, which we call a nanoneedle, are explained in detail. The nanoneedle insertion into a cell can be judged by a sudden drop of force in a force-distance curve. The probabilities of nanoneedle insertion into cells were 80~90%, which were higher than those of typical microinjection capillaries. When the diameter of the nanoneedle was smaller than 400 nm, the nanoneedle insertion into a cell over 1 hour had almost no influence on the cell viability. A highly efficient gene delivery and a high ratio of expressed gene per delivered DNA compared the conventional major nonviral gene delivery methods could be achieved using the gene modified nanoneedle.

Enhanced delivery of protein fused to cell penetrating peptides to mammalian cells

  • Moon, Jung-Il;Han, Min-Joon;Yu, Shin-Hye;Lee, Eun-Hye;Kim, Sang-Mi;Han, Kyuboem;Park, Chang-Hwan;Kim, Chun-Hyung
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.324-329
    • /
    • 2019
  • Recent progress in cellular reprogramming technology and lineage-specific cell differentiation has provided great opportunities for translational research. Because virus-based gene delivery is not a practical reprogramming protocol, protein-based reprogramming has been receiving attention as a safe way to generate reprogrammed cells. However, the poor efficiency of the cellular uptake of reprogramming proteins is still a major obstacle. Here, we reported key factors which improve the cellular uptake of these proteins. Purified red fluorescent proteins fused with 9xLysine (dsRED-9K) as a cell penetrating peptide were efficiently delivered into the diverse primary cells. Protein delivery was improved by the addition of amodiaquine. Furthermore, purified dsRED-9K was able to penetrate all cell lineages derived from mouse embryonic stem cells efficiently. Our data may provide important insights into the design of protein-based reprogramming or differentiation protocols.

Highly Efficient Gene Delivery into Transfection-Refractory Neuronal and Astroglial Cells Using a Retrovirus-Based Vector

  • Kim, Byung Oh;Pyo, Suhkneung
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.451-454
    • /
    • 2005
  • Introduction of foreign genes into brain cells, such as neurons and astrocytes, is a powerful approach to study the gene function and regulation in the neuroscience field. Calcium phosphate precipitates have been shown to cause cytotoxicity in some mammalian cells and brain cells, thus leading to low transfection efficiency. Here, we describe a retrovirus-mediated gene delivery method to transduce foreign genes into brain cells. In an attempt to achieve higher gene delivery efficiency in these cells, we made several changes to the original method, including (1) use of a new packaging cell line, Phoenix ampho cells, (2) transfection of pMX retroviral DNA, (3) inclusion of 25 mM chloroquine in the transduction, and (4) 3- 5 h incubation of retroviruses with target cells. The results showed that the modified protocol resulted in a range of 40- 60% gene delivery efficiency in neurons and astrocytes. Furthermore, these results suggest the potential of the retrovirus-mediated gene delivery protocol being modified and adapted for other transfection-refractory cell lines and primary cells.

Magnetofection is an efficient tool for ectopic gene expression into oral cells

  • Ji, Jae-Hoon;Ko, Seon-Yle;Jang, Young-Joo
    • International Journal of Oral Biology
    • /
    • v.32 no.1
    • /
    • pp.7-11
    • /
    • 2007
  • It is difficult to introduce DNA in non-invasive manner into oral cancer cells as well as primary cells for gene manipulation and expression in vivo. So far, several methods for a gene delivery have been performed to solve this problem. Magnetofection is one of the recent methods for gene transfer, and nanoparticles are applied under a magnetic field for DNA delivery. We investigated whether the magnetofection increases the efficiency of a gene delivery into several oral cell lines. By using a plasmid coding the green fluorescent protein (GFP), the efficiency of gene transfer by magnetofection was compared with those by using the calcium phosphate and the commercial transfection agent. Indeed, the magnetofection increased the green fluorescent signal in cells, suggested that this method apparently enhance the efficiency of gene delivery without any defects in various oral cancer cell lines. Finally, we have shown that magnetofection can be a useful technique for gene delivery to difficult-to-transfect cells to perform a functional study of genes in vivo.

Freeze-dried bovine amniotic membrane as a cell delivery scaffold in a porcine model of radiation-induced chronic wounds

  • Oh, Daemyung;Son, Daegu;Kim, Jinhee;Kwon, Sun-Young
    • Archives of Plastic Surgery
    • /
    • v.48 no.4
    • /
    • pp.448-456
    • /
    • 2021
  • Background Locoregional stem cell delivery is very important for increasing the efficiency of cell therapy. Amnisite BA (Amnisite) is a freeze-dried amniotic membrane harvested from bovine placenta. The objective of this study was to investigate the retention of cells of the stromal vascular fraction (SVF) on Amnisite and to determine the effects of cell-loaded Amnisite in a porcine radiation-induced chronic wound model. Methods Initially, experiments were conducted to find the most suitable hydration and incubation conditions for the attachment of SVF cells extracted from pig fat to Amnisite. Before seeding, SVFs were labeled with PKH67. The SVF cell-loaded Amnisite (group S), Amnisite only (group A), and polyurethane foam (group C) were applied to treat radiation-induced chronic wounds in a porcine model. Biopsy was performed at 10, 14, and 21 days post-operation for histological analysis. Results Retaining the SVF on Amnisite required 30 minutes for hydration and 1 hour for incubation. A PKH67 fluorescence study showed that Amnisite successfully delivered the SVF to the wounds. In histological analysis, group S showed increased re-epithelialization and revascularization with decreased inflammation at 10 days post-operation. Conclusions SVFs had acceptable adherence on hydrated Amnisite, with successful cell delivery to a radiation-induced chronic wound model.

Development of Vaccine Delivery System and Challenges (백신 전달기술 개발 동향과 과제)

  • Jung, Hyung-Il;Kim, Jung-Dong;Kim, Mi-Roo;Dangol, Manita
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.497-506
    • /
    • 2010
  • Vaccine is a protective clinical measure capable of persuading immune system against infectious agents. Vaccine can be categorized as live attenuated and inactivated. Live attenuated vaccines activate immunity similar to natural infection by replicating living organisms whereas inactivated vaccines are either whole cell vaccines, eliciting immune response by killed organisms,or subunit vaccines, stimulating immunity by non-replicating sub cellular parts. The components of vaccine play a critical role in deciding the immune response mediated by the vaccine. The innate immune responds against the antigen component. Adjuvants represent an importantcomponent of vaccine for enhancing the immunogenicity of the antigens. Subunit vaccines with isolated fractions of killed and recombinant antigens are mostly co-administered with adjuvants. The delivery system of the vaccine is another essential component to ensurethat vaccine is delivered to the right target with right dosage form. Furthermore, vaccine delivery system ensures that the desired immune response is achieved by manipulating the optimal interaction of vaccine and adjuvantwith the immune cell. The aforementioned components along with routes of administration of vaccine are the key elements of a successful vaccination procedure. Vaccines can be administered either orally or by parenteral routes. Many groups had made remarkable efforts for the development of new vaccine and delivery system. The emergence of new vaccine delivery system may lead to pursue the immunization goals with better clinical practices.

Evaluation of Cell Viability and Delivery Efficiency in Electroporation System According to the Concentrations of Propidium Iodide and Yo-Pro-1 (전기천공시스템에서 Propidium Iodide와 Yo-Pro-1의 농도에 따른 세포 생존율과 전달효율 평가)

  • Bae, Seo Jun;Im, Do Jin
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.898-906
    • /
    • 2019
  • In this study, basic research was conducted to provide guidelines for selecting fluorescent dye and using proper concentration of fluorescent dye to use evaluation of cell viability and fluorescent dye delivery efficiency. Propidium iodide and Yo-Pro-1 were used as fluorescent dyes. In the evaluation of cell viability and the efficiency of delivery using Propidium Iodide and Yo-Pro-1, the histogram of each fluorescent dye was different depending on the type of fluorescent dye and the concentration used. These results were related to the characteristics of the fluorescent dyes used. This was related to the properties of the fluorescent dyes used. From these results, it was found that the analytical results depending on the characteristics of the fluorescent dyes used in the cell analysis. The effect of the fluorescent dye on the cell was confirmed, but it was confirmed that it did not affect the analysis result. In addition, the influence of interference between fluorescent signals was confirmed when two or more kinds of fluorescent dyes were used for analysis. The higher the concentration of Yo-Pro-1 was, the larger the effect of interference was, and the concentration of Propidium Iodide did not affect the interference of fluorescence signal. This study confirmed that the evaluation of the cell viability and the evaluation of the delivery efficiency were influenced by the type and concentration of the fluorescent dyes and it was related to the characteristics of the fluorescent dyes. Based on the results, appropriate concentrations of fluorescent dyes suitable for evaluation of cell viability and delivery efficiency were suggested.