• Title/Summary/Keyword: Cell cycle-regulated genes

Search Result 118, Processing Time 0.022 seconds

Studies on Gene Expression of Yukmijihwang-tang using High-throughput Gene Expression Analysis Techniques (대규모 유전자 분석 기법을 이용한 육미지황원의 유전자 발현 연구)

  • Kang, Bong-Joo;Kim, Yun-Taik;Cho, Dong-Wuk
    • Korean Journal of Oriental Medicine
    • /
    • v.8 no.2 s.9
    • /
    • pp.95-107
    • /
    • 2002
  • Yukmijihwang-tang(YM) is a noted herbal prescription in Chinese and Korean traditional medicines, and it has been known to reinforce the vital essence and has been widely used for a variety of disease such as stroke, osteoporosis, anti-tumor, and hypothyrodism. Regarding its traditional use, YM has been known to reinforce the Yin (vital essence) of liver and kidney. Also it has been known to reinforce nutrition and biological function in brain. Recently, studies suggested that YM increase antioxidant activities and exert the protective effect against oxidant-induced liver cell injury. We investigated the high-throughput gene expression analysis on the Yukmijihwang-tang administrated in SD rats. Microarray data were validated on a limited number of genes by semiquantitative RT-PCR and Western blot analyses. The recent availability of microarrays provides an attractive strategy for elaborating an unbiased molecular profile of large number of genes in drug discovery This experimental approach offers the potential to identify molecules or cellular pathways not previously associated with herbal medicine. Total RNA from normal control brain and Yukmijihwang-tang administrated brain were hybridized to microarrays containing 10,000 rat genes. The 52 genes were found to be up-regulated(twice or more) excluding EST gene. The nine genes were found to be down-regulated(twice or more) excluding EST gene. Gene array technology was used to identify for the first time many genes expression pathway analysis that arecell cycle pathway, apoptosis pathway, electron transport chain pathway, cytoplasmic ribosomal protein pathway, fatty acid degradation pathway, and TGF-beta signaling pathway. These differentially expressed genes pathway analysis have not previously been iavestigated in the context of herbal medicine efficacy and represent novel factors for further study of the mechanism of herbal medicine efficacy.

  • PDF

Hsp90 Inhibitor Induces Cell Cycle Arrest and Apoptosis of Early Embryos and Primary Cells in Pigs

  • Son, Myeong-Ju;Park, Jin-Mo;Min, Sung-Hun;Hong, Joo-Hee;Park, Hum-Dai;Koo, Deog-Bon
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.33-45
    • /
    • 2011
  • Heat shock protein 90 (Hsp90) is ATPase-directed molecular chaperon and affects survival of cancer cell. Inhibitory effect of Hsp90 by inducing cell cycle arrest and apoptosis in the cancer cell was reported. However, its role during oocyte maturation and early embryo development is very insufficient. In this study, we traced the effects of Hsp90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), on meiotic maturation and early embryonic development in pigs. We also investigated several indicators of developmental potential, including structural integrity, gene expression (Hsp90-, cell cycle-, and apoptosis-related genes), and apoptosis, which are affected by 17-AAG. Then, we examined the roles of Hsp90 inhibitor on viability of primary cells in pigs. Porcine oocytes were cultured in the NCSU-23 medium with or without 17-AAG for 44 h. The proportion of GV arrested oocytes was significantly different between the 17-AAG treated and untreated group (78.2 vs 34.8%, p<0.05). After completion of meiotic maturation, the proportion of MII oocytes was lower in the 17-AAG treated group than in the control group (27.9 vs 71.0%, p<0.05). After IVF, the percentage of penetrated oocytes was significantly lower in the 17-AAG treated group (25.2%), resulting in lower normal pronucleus formation (2PN of 14.6%). Therefore, the inhibition of meiotic progression by Hsp90 inhibitor played a critical role in fertilization status. Porcine embryo were cultured in the PZM-3 medium with or without 17-AAG for 6 days. In result, significant differences in developmental potential were detected between the embryos that were cultured with or without 17-AAG. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) showed that the number of containing fragmented DNA at the blastocyst stage increased in the 17-AAG treated group compared with control (7.5 vs 4.4, respectively). Blastocysts that developed in the 17-AAG treated group had low structural integrity and high apoptotic nuclei than those of the untreated control, resulting in decrease the embryonic qualities of preimplantation porcine blastocysts. The mRNA expressions of cell cycle-related genes were down-regulated in the 17-AAG treated group compared with control. Also, the expression of the pro-apoptotic gene Bax increased in 17-AAG treated group, whereas expression of the anti-apoptotic gene Bel-XL decreased. However, the expression of ER stress-related genes did not changed by 17-AAG. Cultured pESF cells were treated with or without 17-AAG and used for MIT assay. The results showed that viability of pESF cells were decreased by treatment of 17-AAG ($2{\mu}M$) for 24 hr. These results indicated that 17-AAG decreased cell proliferation and increased cell death. Expression patterns Hsp90 complex genes (Hsp70 and p23), cell cycle-related genes (cdc2 and cdc25c) and apoptosis-related genes (Bax and Bcl-XL) were significantly changed by using RT-PCR analysis. The spliced form of pXbp-1 product (pXbp-1s) was detected in the tunicamycin (TM) treated cells, but it is not detected in 17-AAG treated cells. In conclusion, Hsp90 appears to play a direct role in porcine early embryo developmental competence including structural integrity of blastocysts. Also, these results indicate that Hsp90 is closely associated with cell cycle- and apoptosis-related genes expression in developing porcine embryos.

Extracellular acidity enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis via DR5 in gastric cancer cells

  • Hong, Ran;Han, Song Iy
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.513-523
    • /
    • 2018
  • The tumor microenvironment greatly influences cancer cell characteristics, and acidic extracellular pH has been implicated as an essential factor in tumor malignancy and the induction of drug resistance. Here, we examined the characteristics of gastric carcinoma (GC) cells under conditions of extracellular acidity and attempted to identify a means of enhancing treatment efficacy. Acidic conditions caused several changes in GC cells adversely affecting chemotherapeutic treatment. Extracellular acidity did inhibit GC cell growth by inducing cell cycle arrest, but did not induce cell death at pH values down to 6.2, which was consistent with down-regulated cyclin D1 and up-regulated p21 mRNA expression. Additionally, an acidic environment altered the expression of atg5, HSPA1B, collagen XIII, collagen XXAI, slug, snail, and zeb1 genes which are related to regulation of cell resistance to cytotoxicity and malignancy, and as expected, resulted in increased resistance of cells to multiple chemotherapeutic drugs including etoposide, doxorubicin, daunorubicin, cisplatin, oxaliplatin and 5-FU. Interestingly, however, acidic environment dramatically sensitized GC cells to apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Consistently, the acidity at pH 6.5 increased mRNA levels of DR4 and DR5 genes, and also elevated protein expression of both death receptors as detected by immunoblotting. Gene silencing analysis showed that of these two receptors, the major role in this effect was played by DR5. Therefore, these results suggest that extracellular acidity can sensitize TRAIL-mediated apoptosis at least partially via DR5 in GCs while it confers resistance to various type of chemotherapeutic drugs.

Curcumin Induces Downregulation of E2F4 Expression and Apoptotic Cell Death in H CT116 Human Colon Cancer Cells; Involvement of Reactive Oxygen Species

  • Kim, Kyung-Chan;Lee, Chu-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.391-397
    • /
    • 2010
  • E2F transcription factors and their target genes have been known to play an important role in cell growth control. We found that curcumin, a polyphenolic phytochemical isolated from the plant Curcuma longa, markedly suppressed E2F4 expression in HCT116 colon cancer cells. Hydrogen peroxide was also found to decrease E2F4 protein level, indicating the involvement of reactive oxygen species (ROS) in curucmin-induced downregulation of E2F4 expression. Involvement of ROS in E2F4 downregulation in response to curcumin was confirmed by the result that pretreatment of cells with N-acetylcystein (NAC) before exposure of curcumin almost completely blocked the reduction of E2F4 expression at the protein as well as mRNA level. Anti-proliferative effect of curcumin was also suppressed by NAC which is consistent to previous reports showing curcumin-superoxide production and induction of poly (ADP-ribose) polymerase (PARP) cleavage as well as apoptosis. Expression of several genes, cyclin A, p21, and p27, which has been shown to be regulated in E2F4-dependent manner and involved in the cell cycle progression was also affected by curcumin. Moreover, decreased (cyclin A) and increased (p21 and p27) expression of these E2F4 downstream genes by curcumin was restored by pretreatment of cells with NAC and E2F4 overexpression which is induced by doxycycline. In addition, E2F4 overexpression was observed to partially ameliorate curcumin-induced growth inhibition by cell viability assay. Taken together, we found curcumin-induced ROS down-regulation of E2F4 expression and modulation of E2F4 target genes which finally lead to the apoptotic cell death in HCT116 colon cancer cells, suggesting that E2F4 appears to be a novel determinant of curcumin-induced cytotoxicity.

Differential Expressions of Adhesion Receptor Genes in the Rat Uterus Associated with Ovarian Steroid Hormone (흰쥐 자궁에서 난소 스테로이드 호르몬에 의한 Adhesion 수용체 유전자 발현조절에 대한 연구)

  • Kang Han Seung;Lee Chae Kwan;Moon Deog Hwan;Kang Sung Goo
    • Development and Reproduction
    • /
    • v.7 no.1
    • /
    • pp.41-48
    • /
    • 2003
  • This report aimed at investigating the differential gene expressions of the adhesion receptors between ovariectomized (OVX) and estrus stage rat uteri (OVX vs. estrus pair) using the cDNA expression away analysis. In addition, this report aimed at confirming of the differential gene expressions of the adhesion receptors between OVX and progesterone (P$_4$) injected OVX rat uteri (OVX vs. OVX+P$_4$ pair). RNA samples were extracted from the uterus and reverse-transcribed in the presence of [$\alpha$$^{32}$ P]-dATP. Membrane sets of Rat Atlas array 1.2 II (Clontech) were hybridized with CDNA probe sets. RT-PCR was employed to validate the relative gene expression patterns obtained by the cDNA array. The results were well consistent to cDNA array analysis data except the fold changes of gene expression. Among a total of 1176 cDNAs, 5 genes of adhesion receotor including embigin protein, activated leukocyte cell adhesion molecule, afadin, neuroligin 2, semaphorin Z showed significant (more than 2-fold) changes in the OVX vs. late estrus pair. All of these genes were up regulated in estrus stage than OVX rat uterus. In the OVX vs. OVX+P$_4$ pair, 4 genes including osteonectin, afadin, neuroligin 2, semaphorin Z showed significant changes. All of these genes were also up regulated in OVX+P$_4$ injected rat uterus than OVX control. Three genes including afadin, neuroligin 2, semaphorin Z which were up regulated in estrus and OVX+P$_4$ injected rat uteri of both experimental pairs than OVX rat uteri. These genes seem to be under the control of P$_4$.

  • PDF

The Effects of Bee Venom & Melittin on Cell Death in Neuroblastoma Cell Line (Bee Venom 및 Melittin 약침액(藥鍼液)이 신경아세포종(神經芽細胞腫)의 세포사(細胞死)에 미치는 영향(影響))

  • Kang, Dong-cheol;Jung, Tae-young;Seo, Jung-chul;Leem, Seong-cheol;Han, Sang-won
    • Journal of Acupuncture Research
    • /
    • v.20 no.2
    • /
    • pp.98-111
    • /
    • 2003
  • Objective : This study was designed to analyze the effects of bee venom and melittin on cell death in neuroblastoma cell line. Methods : MTT assay, morphologic method, DNA fragmentation, flow cytometry, immunocytochemistry analysis, RT-PCR and Western blot were performed. Results : The obtained results are summarized as follows: 1. The MTT assay demonstrated that neuroblastoma cell viability was significantly inhibitted dose-dependently by treatment with bee venom and melittin in comparison with control. 2. Cell culture demonstrated that control group proliferated highestly at he 5th day in comparison with the 4th day in bee venom and melittin group. And in bee venom and melitti group cell proliferation decreased 2.5 times than control group. 3. The morphologic study demonstrated that neuroblastoma cell showed apoptosis after treatment with bee venom and melittin for 6 hours using microscope. 4. The Flow cytometry demonstrated that apoptosis of neuroblastoma cell treated with bee venom and melittin was related with stop of cell cycle in stage of $G_0/G_1$. 5 .DNA fragmenation demonstrated that neuroblastoma cell treated with bee venom and melittin showed DNA ladder below 1 Kbp. 6. Immunocytochemistry assay demonstrated that Fos and MAPK which are related with cancer were down-regulated by treatment with bee venom and melittin. 7. RT-PCR analysis demonstrated that Fos and MAPK mRNA were transcripted. Fos was down-regulated form treatment with $5{\mu}g/ml$ bee venom and MAPK was down-regulated form $1{\mu}g/ml$ bee venom. 8. Western blot demonstrated that Fos was down-regulated from $1{\mu}g/ml$ bee venom whereas MAPK was expressed by $1{\mu}g/ml$ bee venom but down-regulated by $10{\mu}g/ml$ bee venom. Conclusions : We found that some cancer related genes ware down-regulated by treatment with bee venom and melittin. Further study is needed for investigating the anti-cancer effect of bee venom and melittin.

  • PDF

Ubiquitin E3 ligases controlling p53 stability

  • Lee, Seong-Won;Seong, Min-Woo;Jeon, Young-Joo;Chung, Chin-Ha
    • Animal cells and systems
    • /
    • v.16 no.3
    • /
    • pp.173-182
    • /
    • 2012
  • The p53 protein plays a pivotal role in tumor suppression. The cellular level of p53 is normally kept low by proteasome-mediated degradation, allowing cell cycle progression and cell proliferation. Under stress conditions, such as DNA damage, p53 is stabilized and activated through various post-translational modifications of itself as well as of its regulatory proteins for induction of the downstream genes responsible for cell cycle arrest, DNA repair, and apoptosis. Therefore, the level of p53 should be tightly regulated for normal cell growth and for prevention of the accumulation of mutations in DNA under stress conditions, which otherwise would lead to tumorigenesis. Since the discovery of Mdm2, a critical ubiquitin E3 ligase that destabilizes p53 in mammalian cells, nearly 20 different E3 ligases have been identified and shown to function in the control of stability, nuclear export, translocation to chromatin or nuclear foci, and oligomerization of p53. So far, a large number of excellent reviews have been published on the control of p53 function in various aspects. Therefore, this review will focus only on mammalian ubiquitin E3 ligases that mediate proteasome-dependent degradation of p53.

Gene Expression in Zn-deficient U937 Cell Line : Using cDNA Microarray (아연결핍된 단핵구 U937 Cell Line에 있어서의 유전자 발현 탐색 : cDNA Microarray 기법 이용)

  • Beattie, John H.;Trayhurn, Paul
    • Journal of Nutrition and Health
    • /
    • v.35 no.10
    • /
    • pp.1053-1059
    • /
    • 2002
  • In post-genome period, the technique for identifying gene expression has been changed to high throughput screening. In the field of molecular nutrition, the need for this technique to clarify molecular function of the specific nutrient is essential. In this study, we have tested the zinc-regulated gene expression in zinc-deficient U937 cells, using cDNA microarray which is the cutting-edge technique to screen large numbers of gene expression simultaneously. The study result can be used for the preliminary gene screening data for clarifying, using monocyte U937 cell line, molecular Zn aspect in atherosclerosis. U937 cells were cultured in Zn-adequate (control, 12 $\mu$M Zn) or Zn-deficient (experimental, 0 $\mu$M Zn) ESMI media during 2 days, respectively. Cells were harvested and RNA was extracted. Total RNA was reverse-transcriptinized and synthesized cDNA probe labeled with Cy-3. fluorescent labeled cDNA probe was applied to microarray slide for hybridization slide, and after then, the slide was scanned using fluorescence scanner. ‘Highly expressed genes’ in Zn-deficient U937 cells, comparing to Zn-adequate group, are mainly about the genes for motility protein, immune system protein, oncogene and tumor suppressor and ‘Less highly expressed genes’ are about the genes for transcription, apoptosis associated protein, cell cycle, and several basic transcription factors. The results of this preliminary study imply the effectiveness of cDNA microarray for expression profiling of a singly nutrient deficiency, specially Zn. Furthur study, using tailored-cDNA array and capillary endothelial cell lines, would be beneficial to clarify molecular Zn function, more in detail.

Identification of key genes and carcinogenic pathways in hepatitis B virus-associated hepatocellular carcinoma through bioinformatics analysis

  • Sang-Hoon Kim;Shin Hwang;Gi-Won Song;Dong-Hwan Jung;Deok-Bog Moon;Jae Do Yang;Hee Chul Yu
    • Annals of Hepato-Biliary-Pancreatic Surgery
    • /
    • v.26 no.1
    • /
    • pp.58-68
    • /
    • 2022
  • Backgrounds/Aims: Mechanisms for the development of hepatocellular carcinoma (HCC) in hepatitis B virus (HBV)-infected patients remain unclear. The aim of the present study was to identify genes and pathways involved in the development of HBV-associated HCC. Methods: The GSE121248 gene dataset, which included 70 HCCs and 37 adjacent liver tissues, was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) in HCCs and adjacent liver tissues were identified. Gene ontology and Kyoto Encyclopedia of Genes and Genome pathway enrichment analyses were then performed. Results: Of 134 DEGs identified, 34 were up-regulated and 100 were down-regulated in HCCs. The 34 up-regulated DEGs were mainly involved in nuclear division, organelle fission, spindle and midbody formation, histone kinase activity, and p53 signaling pathway, whereas the 100 down-regulated DEGs were involved in steroid and hormone metabolism, collagen-coated extracellular matrix, oxidoreductase activity, and activity on paired donors, including incorporation or reduction of molecular oxygen, monooxygenase activity, and retinol metabolism. Analyses of protein-protein interaction networks with a high degree of connectivity identified significant modules containing 14 hub genes, including ANLN, ASPM, BUB1B, CCNB1, CDK1, CDKN3, ECT2, HMMR, NEK2, PBK, PRC1, RACGAP1, RRM2, and TOP2A, which were mainly associated with nuclear division, organelle fission, spindle formation, protein serine/threonine kinase activity, p53 signaling pathway, and cell cycle. Conclusions: This study identified key genes and carcinogenic pathways that play essential roles in the development of HBV-associated HCC. This may provide important information for the development of diagnostic and therapeutic targets for HCC.

The Phenotype of the Soybean Disease-Lesion Mimic (dlm) Mutant is Light-Dependent and Associated with Chloroplast Function

  • Kim, Byo-Kyong;Kim, Young-Jin;Paek, Kyoung-Bee;Chung, Jong-Il;Kim, Jeong-Kook
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.395-401
    • /
    • 2005
  • The dlm (disease lesion mimic) mutant of soybean (Glycine max L. Merr) shows the similar lesion of a soybean disease caused by a fungus, Corynespora cassilcola. The lesion was examined at cellular and molecular level. Trypan blue staining result indicated that cell death was detectable in the entire region of leaves excluding veins when the lesions had already been developed. We found that the mesophyll cells of palisade layer in the dim mutant appeared to be wider apart from each other. The chloroplasts of the dim mutant cells contained bigger starch granules than those in normal plants. We also found that the lesion development of dlm plant was light-dependent and the starch degradation during the dark period of diurnal cycle was impaired in the mutant. Three soybean pathogenesis-related genes, PR-1a, PR-4, and PR-10, were examined for their expression patterns during the development of disease lesion mimic. The expression of all three genes was up-regulated to some extent upon the appearance of the disease lesion mimic. Although the exact function of DLM protein remains elusive, our data would provide some insight into mechanism underling the cell death associated with the dim mutation.