• 제목/요약/키워드: Cell cycle arrest

검색결과 709건 처리시간 0.034초

보정방암탕가감방(保正防癌湯加減方)이 cisplatin으로 유도된 인간 근위세뇨관 HK-2세포의 G2/M phase arrest에 미치는 영향 (Inhibitory Effect of Bojungbangam-tang Kakambang on Cisplatin-Induced G2/M Phase Arrest in Human Renal Proximal Tubular HK-2 Cells)

  • 박성철;이수경;염승룡;권영달;송용선
    • 동의생리병리학회지
    • /
    • 제21권6호
    • /
    • pp.1555-1563
    • /
    • 2007
  • To idenifty effect of Bojungbangam-tang kakambang on Cisplatin-Induced G2/M Phase Arrest in Human Renal Proximal Tubular HK-2 Cells. Cytotoxicity of cisplatin was detected in HK-2 cells and the value of IC50 is about $25\;{\mu}M$. The treatment of cisplatin to HK-2 showed the G2/M phase cell cycle arrest. The ethanol extract of Bojungbangam-tang kakambang (EBTKB), a new herbal prescription composed of ten crude herbs, inhibited cisplatin-induced G2/M phase arrest in HK-2 cells. EBTKB increased G0/G1 peak in cisplatin-treated HK-2 cells. p53, p21 and p27 expression were increased in cisplatin-treated HK-2 cells. Inhibitory effect of EBTKB on cisplatin-induced G2/M phase arrest was accomplished through inhibition of p53, p21 and p27 expression. Also, reduced CDK2 and cyclin A expression by cisplatin were increased by EBTKB, but cyclin E was not changed. Reduction of ERK activation and increment of p38 activation by cisplatin were increased ERK activation and decreased p38 activation by EBTKB. Cisplatin had no effect on JNK activation, but EBTKB increased JNK activation. These results can suggest that EBTKB inhibits cisplatin-induced G2/M phase arrest in HK-2 cell through reduction of p53-dependent p21 and p27 protein, ERK activation and p38 inactivation.

Tetrazolium Violet Induced Apoptosis and Cell Cycle Arrest in Human Lung Cancer A549 Cells

  • Zhang, Xiao-Hong;Zhang, Nan;Lu, Jian-Mei;Kong, Qing-Zhong;Zhao, Yun-Feng
    • Biomolecules & Therapeutics
    • /
    • 제20권2호
    • /
    • pp.177-182
    • /
    • 2012
  • Tetrazolium violet is a tetrazolium salt and has been proposed as an antitumor agent. In this study, we reported for the first time that tetrazolium violet not only inhibited human lung cancer A549 cell proliferation but also induced apoptosis and blocked cell cycle progression in the G1 phase. The results showed that tetrazolium violet significantly decreased the viability of A549 cells at $5-15{\mu}M$. Tetrazolium violet -induced apoptosis in A549 cells was confirmed by H33258 staining assay. In A549, tetrazolium violet blocked the progression of the cell cycle at G1 phase by inducing p53 expression and further up-regulating p21/WAF1 expression. In addition, an enhancement in Fas/APO-1 and its two forms of ligands, membrane-bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), as well as caspase, were responsible for the apoptotic effect induced by tetrazolium violet. The conclusion of this study is that tetrazolium violet induced p53 expression which caused cell cycle arrest and apoptosis. These findings suggest that tetrazolium violet has strong potential for development as an agent for treatment lung cancer.

Anticancer effects of D-pinitol in human oral squamous carcinoma cells

  • Shin, Hyun-Chul;Bang, Tea-Hyun;Kang, Hae-Mi;Park, Bong-Soo;Kim, In-Ryoung
    • International Journal of Oral Biology
    • /
    • 제45권4호
    • /
    • pp.152-161
    • /
    • 2020
  • D-pinitol is an analog of 3-methoxy-D-chiro-inositol found in beans and plants. D-pinitol has anti-inflammatory, antidiabetic, and anticancer effects. Additionally, D-pinitol induces apoptosis and inhibits metastasis in breast and prostate cancers. However, to date, no study has investigated the anticancer effects of D-pinitol in oral cancer. Therefore, in this study, whether the anticancer effects of D-pinitol induce apoptosis, inhibit the epithelial-to-mesenchymal transition (EMT), and arrest cell cycle was investigated in squamous epithelial cells. D-pinitol decreased the survival and cell proliferation rates of CAL-27 and Ca9-22 oral squamous carcinoma cells in a concentration- and time-dependent manner. Evidence of apoptosis, including nuclear condensation, poly (ADP-ribose) polymerase, and caspase-3 fragmentation, was also observed. D-pinitol inhibited the migration and invasion of both cell lines. In terms of EMT-related proteins, E-cadherin was increased, whereas N-cadherin, Snail, and Slug were decreased. D-pinitol also decreased the expression of cyclin D1, a protein involved in the cell cycle, but increased the expression of p21, a cyclin-dependent kinase inhibitor. Hence, D-pinitol induces apoptosis and cell cycle arrest in CAL-27 and Ca9-22 cells, demonstrating an anticancer effect by decreasing the EMT.

전이성 유방암 세포주에 대한 당목향의 항암효과탐색 (Anti-cancer Effects by Saussurea lappa Clarke in Highly-metastatic MDA-MB-231 Breast Cancer Cells)

  • 김치홍;최윤경;김우영;신용철;고성규
    • 동의생리병리학회지
    • /
    • 제25권6호
    • /
    • pp.968-974
    • /
    • 2011
  • Saussurea lappa Clarke is a well-known transitional medicine in Asia including Korea, China and Japan. It has been reported that Clarke has diverse effects such as anti-viral, anti-inflammatory, anti-cancer in human gastric cells and human prostate cancer cells. However, the anti-cancer effects and the mechanism of actions of Saussurea lappa Clarke are still unknown in breast cancer. In this study, we observed that Saussurea lappa Clarke inhibits the cell growth in a dose- and time-dependent manner in highly-metastatic MDA-MB-231 breast cancer cells. In order to examine whether Saussurea lappa Clarke suppresses cell growth inducing apoptosis cell death or cell cycle arrest, we analyzed DNA contents and cell cycle distribution using a flow cytometer and western blotting in MDA-MB-231 cells. We suggest that Saussurea lappa Clarke dose not induced apoptosis and induced G2/M phase cell cycle arrest. Moreover, Saussurea lappa Clarke also decreased the expression level of metastasis-angiogenesis releated protein such as VEGF. However, dose not changed the expression level of metastasis related protease MMP-1 in highly-metastatic MDA-MB-231 breast cancer cells. Therefore, Saussurea lappa Clarke might be good and useful chemotherapy agent highly-metastatic breast cancer patients.

Panduratin A Inhibits Cell Proliferation by Inducing G0/G1 Phase Cell Cycle Arrest and Induces Apoptosis in Breast Cancer Cells

  • Liu, Qiuming;Cao, Yali;Zhou, Ping;Gui, Shimin;Wu, Xiaobo;Xia, Yong;Tu, Jianhong
    • Biomolecules & Therapeutics
    • /
    • 제26권3호
    • /
    • pp.328-334
    • /
    • 2018
  • Because of the unsatisfactory treatment options for breast cancer (BC), there is a need to develop novel therapeutic approaches for this malignancy. One such strategy is chemotherapy using non-toxic dietary substances and botanical products. Studies have shown that Panduratin A (PA) possesses many health benefits, including anti-inflammatory, anti-bacterial, anti-oxidant and anticancer activities. In the present study, we provide evidence that PA treatment of MCF-7 BC cells resulted in a time- and dose-dependent inhibition of cell growth with an $IC_{50}$ of $15{\mu}M$ and no to little effect on normal human MCF-10A breast cells. To define the mechanism of these anti-proliferative effects of PA, we determined its effect critical molecular events known to regulate the cell cycle and apoptotic machinery. Immunofluorescence and flow cytometric analysis of Annexin V-FITC staining provided evidence for the induction of apoptosis. PA treatment of BC cells resulted in increased activity/expression of mitochondrial cytochrome C, caspases 7, 8 and 9 with a significant increase in the Bax:Bcl-2 ratio, suggesting the involvement of a mitochondrial-dependent apoptotic pathway. Furthermore, cell cycle analysis using flow cytometry showed that PA treatment of cells resulted in G0/G1 arrest in a dose-dependent manner. Immunoblot analysis data revealed that, in MCF-7 cell lines, PA treatment resulted in the dose-dependent (i) induction of $p21^{WAF1/Cip1}$ and p27Kip1, (ii) downregulation of Cyclin dependent kinase (CDK) 4 and (iii) decrease in cyclin D1. These findings suggest that PA may be an effective therapeutic agent against BC.

Exogenous Morphine Inhibits Human Gastric Cancer MGC-803 Cell Growth by Cell Cycle Arrest and Apoptosis Induction

  • Qin, Yi;Chen, Jing;Li, Li;Liao, Chun-Jie;Liang, Yu-Bing;Guan, En-Jian;Xie, Yu-Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권4호
    • /
    • pp.1377-1382
    • /
    • 2012
  • Morphine is not only an analgesic treating pain for patients with cancer but also a potential anticancer drug inhibiting tumor growth and proliferation. To gain better insight into the involvement of morphine in the biological characteristics of gastric cancer, we investigated effects on progression of gastric carcinoma cells and the expression of some apoptosis-related genes including caspase-9, caspase-3, survivin and NF-${\kappa}B$ using the MGC-803 human gastric cancer cell line. The viability of cells was assessed by MTT assay, proliferation by colony formation assay, cell cycle progression and apoptosis by flow cytometry and ultrastructural alteration by transmission electron microscopy. The influences of morphine on caspase-9, caspase-3, survivin and NF-${\kappa}B$ were evaluated by semi-quantitative RT-PCR and Western blot. Our data showed that morphine could significantly inhibit cell growth and proliferation and cause cell cycle arrest in the G2/M phase. MGC-803 cells which were incubated with morphine also had a higher apoptotic rate than control cells. Morphine also led to morphological changes of gastric cancer cells. The mechanism of morphine inhibiting gastric cancer progression in vitro might be associated with activation of caspase-9 and caspase-3 and inhibition of survivin and NF-${\kappa}B$.

Increased HoxB4 Inhibits Apoptotic Cell Death in Pro-B Cells

  • Park, Sung-Won;Won, Kyung-Jong;Lee, Yong-Soo;Kim, Hye-Sun;Kim, Yu-Kyung;Lee, Hyeon-Woo;Kim, Bo-Kyung;Lee, Byeong-Han;Kim, Jin-Hoi;Kim, Dong-Ku
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권4호
    • /
    • pp.265-271
    • /
    • 2012
  • HoxB4, a homeodomain-containing transcription factor, is involved in the expansion of hematopoietic stem cells and progenitor cells in vivo and in vitro, and plays a key role in regulating the balance between hematopoietic stem cell renewal and cell differentiation. However, the biological activity of HoxB4 in other cells has not been reported. In this study, we investigated the effect of overexpressed HoxB4 on cell survival under various conditions that induce death, using the Ba/F3 cell line. Analysis of phenotypical characteristics showed that HoxB4 overexpression in Ba/F3 cells reduced cell size, death, and proliferation rate. Moreover, the progression from early to late apoptotic stages was inhibited in Ba/F3 cells subjected to HoxB4 overexpression under removal of interleukin-3-mediated signal, leading to the induction of cell cycle arrest at the G2/M phase and attenuated cell death by Fas protein stimulation in vitro. Furthermore, apoptotic cell death induced by doxorubicin-treated G2/M phase cell-cycle arrest also decreased with HoxB4 overexpression in Ba/F3 cells. From these data, we suggest that HoxB4 may play an important role in the regulation of pro-B cell survival under various apoptotic death environments.

Ceramide Induces Apoptosis and Growth Arrest of Human Glioblastoma Cells by Inhibiting Akt Signaling Pathways

  • Lee, Eun-Chang;Lee, Young-Seok;Park, Na-Hee;So, Kwang-Sup;Chun, Young-Jin;Kim, Mie-Young
    • Biomolecules & Therapeutics
    • /
    • 제19권1호
    • /
    • pp.21-26
    • /
    • 2011
  • Ceramide is an important lipid mediator of extracellular signals that control various cellular functions, including apoptosis. In this study, we showed that ceramide induced apoptosis in U373MG human glioblastoma cells associated with G1 cell cycle arrest. Treatment of cells with ceramide increased proapoptotic Bax expression and inhibited the expression of antiapoptotic Bcl-2 and Bcl-xL Ceramide also downregulated cyclin E, cyclin D1, cdk 2, and cdk4 which are involved in regulating cell cycle. In addition, ceramide suppressed phosphorylation of Akt, Bad, p70 S6 kinase, and 4E-BP1, suggesting the involvement of Akt/mTOR signaling pathway. Additionally, okadaic acid, an inhibitor of protein phosphatase 2A, partially blocked the ceramide mediated inhibition of phosphorylation of Akt and 4E-BP1. These results suggest that ceramide induces apoptosis in U373MG glioblastoma cells by regulating multiple signaling pathways that involve cell cycle arrest associated with Akt signaling pathway.

Inhibitory Effects of Luteolin Isolated from Ixeris sonchifolia Hance on the Proliferation of HepG2 Human Hepatocellular Carcinoma Cells

  • Yee, Su-Bog;Lee, Jung-Hwa;Chung, Hae-Young;Im, Kwang-Sik;Bae, Song-Ja;Choi, Jae-Soo;Kim, Nam-Deuk
    • Archives of Pharmacal Research
    • /
    • 제26권2호
    • /
    • pp.151-156
    • /
    • 2003
  • We investigated the anti-proliferative effects of luteolin and apigenin, isolated from Ixeris sonchifolia Hance, on HepG2 human hepatocellular carcinoma cells. In MTT assay luteolin showed more efficient anti-proliferative effects on cells than apigenin did. According to propidium iodide staining and flow cytometry studies, we postulated that these effects might be a result of cell cycle arrest. Hence we examined the changes of protein expressions related to cell cycle arrest. Western blotting data demonstrated that the down-regulated expression of CDK4 was correlated to the increase of p53 and CDK inhibitor $p21^{WAF1/CIP1}$ protein. These data suggest that luteolin may have potential as an anti-cancer agent.

Involvement of Cdc25c in Cell Cycle Alteration of a Radioresistant Lung Cancer Cell Line Established with Fractionated Ionizing Radiation

  • Li, Jie;Yang, Chun-Xu;Mei, Zi-Jie;Chen, Jing;Zhang, Shi-Min;Sun, Shao-Xing;Zhou, Fu-Xiang;Zhou, Yun-Feng;Xie, Cong-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5725-5730
    • /
    • 2013
  • Cancer patients often suffer from local tumor recurrence after radiation therapy. Cell cycling, an intricate sequence of events which guarantees high genomic fidelity, has been suggested to affect DNA damage responses and eventual radioresistant characteristics of cancer cells. Here, we established a radioresistant lung cancer cell line, A549R, by exposing the parental A549 cells to repeated ${\gamma}$-ray irradiation with a total dose of 60 Gy. The radiosensitivity of A549 and A549R was confirmed using colony formation assays. We then focused on examination of the cell cycle distribution between A549 and A549R and found that the proportion of cells in the radioresistant S phase increased, whereas that in the radiosensitive G1 phase decreased. When A549 and A549R cells were exposed to 4 Gy irradiation the total differences in cell cycle redistribution suggested that G2-M cell cycle arrest plays a predominant role in mediating radioresistance. In order to further explore the possible mechanisms behind the cell cycle related radioresistance, we examined the expression of Cdc25 proteins which orchestrate cell cycle transitions. The results showed that expression of Cdc25c increased accompanied by the decrease of Cdc25a and we proposed that the quantity of Cdc25c, rather than activated Cdc25c or Cdc25a, determines the radioresistance of cells.