• 제목/요약/키워드: Cell analysis

검색결과 11,228건 처리시간 0.069초

Single-Cell Genomics for Investigating Pathogenesis of Inflammatory Diseases

  • Seyoung Jung;Jeong Seok Lee
    • Molecules and Cells
    • /
    • 제46권2호
    • /
    • pp.120-129
    • /
    • 2023
  • Recent technical advances have enabled unbiased transcriptomic and epigenetic analysis of each cell, known as "single-cell analysis". Single-cell analysis has a variety of technical approaches to investigate the state of each cell, including mRNA levels (transcriptome), the immune repertoire (immune repertoire analysis), cell surface proteins (surface proteome analysis), chromatin accessibility (epigenome), and accordance with genome variants (eQTLs; expression quantitative trait loci). As an effective tool for investigating robust immune responses in coronavirus disease 2019 (COVID-19), many researchers performed single-cell analysis to capture the diverse, unbiased immune cell activation and differentiation. Despite challenges elucidating the complicated immune microenvironments of chronic inflammatory diseases using existing experimental methods, it is now possible to capture the simultaneous immune features of different cell types across inflamed tissues using various single-cell tools. In this review, we introduce patient-based and experimental mouse model research utilizing single-cell analyses in the field of chronic inflammatory diseases, as well as multi-organ atlas targeting immune cells.

주파수에 따른 단일세포의 임피던스 분석칩 및 암세포와 정상세포의 구별에의 적용 (A Frequency-dependent Single Cell Impedance Analysis Chip for Applications to Cancer Cell and Normal Cell Discrimination)

  • 장윤희;김민지;조영호
    • 전기학회논문지
    • /
    • 제63권12호
    • /
    • pp.1671-1674
    • /
    • 2014
  • This paper presents a frequency-dependent cell impedance analysis chip for use in cancer and normal cell discrimination. The previous cell impedance analysis chips for flowing cells cannot allow enough time for cell-to-electrode contact to monitor frequency-dependent impedance response. Another type of the previous cell impedance analysis chips for the cells clamped by membranes need complex sample control for making stable cell-to-electrode contact. We present a new impedance analysis chip using the microchamber array, on which a PDMS cover is placed to make stable cell-to-electrode contact for the individual cell trapped in each microchamber; thus achieving frequency-dependent single-cell impedance analysis without complex sample control. Compared to the normal cells, the magnitude of NHBE cells is $60.07{\sim}97.41k{\Omega}$ higher than A549 cells in the frequency range of 95.6 kHz~2MHz and the phase of NHBE is $3.96^{\circ}{\sim}20.8^{\circ}$ higher than A549 cells in the frequency range of 4.37 kHz~2MHz, respectively. It is demonstrated experimentally that the impedance analysis chip performs frequency-dependent cell impedance analysis by making stable cell-to-electrode contact with simple sample control; thereby applicable to the normal cell and cancer cell discrimination.

Vascular Endothelial Cadherin-mediated Cell-cell Adhesion Regulated by a Small GTPase, Rap1

  • Fukuhra, Shigetomo;Sakurai, Atsuko;Yamagishi, Akiko;Sako, Keisuke;Mochizuki, Naoki
    • BMB Reports
    • /
    • 제39권2호
    • /
    • pp.132-139
    • /
    • 2006
  • Vascular endothelial cadherin (VE-cadherin), which belongs to the classical cadherin family, is localized at adherens junctions exclusively in vascular endothelial cells. Biochemical and biomechanical cues regulate the VE-cadherin adhesive potential by triggering the intracellular signals. VE-cadherin-mediated cell adhesion is required for cell survival and endothelial cell deadhesion is required for vascular development. It is therefore crucial to understand how VE-cadherin-based cell adhesion is controlled. This review summarizes the inter-endothelial cell adhesions and introduces our recent advance in Rap1-regulated VE-cadherin adhesion. A further analysis of the VE-cadherin recycling system will aid the understanding of cell adhesion/deadhesion mechanisms mediated by VE-cadherin in response to extracellular stimuli during development and angiogenesis.

A semi-automatic cell type annotation method for single-cell RNA sequencing dataset

  • Kim, Wan;Yoon, Sung Min;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • 제18권3호
    • /
    • pp.26.1-26.6
    • /
    • 2020
  • Single-cell RNA sequencing (scRNA-seq) has been widely applied to provide insights into the cell-by-cell expression difference in a given bulk sample. Accordingly, numerous analysis methods have been developed. As it involves simultaneous analyses of many cell and genes, efficiency of the methods is crucial. The conventional cell type annotation method is laborious and subjective. Here we propose a semi-automatic method that calculates a normalized score for each cell type based on user-supplied cell type-specific marker gene list. The method was applied to a publicly available scRNA-seq data of mouse cardiac non-myocyte cell pool. Annotating the 35 t-stochastic neighbor embedding clusters into 12 cell types was straightforward, and its accuracy was evaluated by constructing co-expression network for each cell type. Gene Ontology analysis was congruent with the annotated cell type and the corollary regulatory network analysis showed upstream transcription factors that have well supported literature evidences. The source code is available as an R script upon request.

와이어 어레이 형태의 내부 도체를 갖는 W-TEM cell의 전자계 분포 특성에 관한 연구 (A study on the electromagnetic field distributions in a W-TEM cell having wire array as an inner conductor)

  • 김명훈;이중근
    • 한국통신학회논문지
    • /
    • 제21권6호
    • /
    • pp.1576-1586
    • /
    • 1996
  • The subject of this paper is the analysis of a Wire-TEM cell(W-TEM cell) which has an inner wire array rather than a metallic septum;its basic structure is similiar to a NBS TEM cell. To verify improved performances of this W-TEM cell as a standard EM field generator, well-known quasi-static approximations are employed and their resultant ingegral equations are numerically analyzed by moment method. Although the electric field strength of a W-TEM cell is 1.4 dB lower than tht of a NBS TEM cell, the uniformity of EM field patterns in a W-TEM cell is improved. It is also shown that the EM field distortions resulting from loading by the conditing objects under test(loading effects), are decreased considerably. This paper also deals with the investigations about relationship between the EM field distributions and the number of wire composing the inner conductor. Finally, the experimental analysis is performed on the practical model which is built on the basis of the design variables brought out by the theoretical andnumerical analysis.

  • PDF

유동 해석을 이용한 평판형 고체 산화물 연료전지의 성능 특성 분석 (I) - 등온 모델 - (Performance Predictions of the Planar-type Solid Oxide Fuel Cell with Computational Flow Analysis (I) - Isothermal Model -)

  • 현희철;손정락;이준식;노승탁
    • 대한기계학회논문집B
    • /
    • 제27권5호
    • /
    • pp.635-643
    • /
    • 2003
  • Parametric study for the analysis of performance characteristics of a planar -type solid oxide fuel cell(SOFC) using computational flow analysis is conducted. A planar -type SOFC, which is composed by two gas channels (fuel and ai.) and one set of anode-electrolyte-cathode assembly, is modeled as a two -dimensional isothermal case. Results of computational analysis of flow field including distributions of mass fractions in gas channels are used to the performance analysis of the fuel cell. Flow analysis makes it possible to consider current density distributions along the length of the cell in the process of performance analysis of the SOFC. As results of parametric study, it is found that the mole fraction of fuel at the inlet of fuel channel, operating pressure and temperature are closely related to the performance characteristics of SOFC.

특성 임피던스 정합을 위한 TEM CELL의 최적 구조 설계와 전계 분포 해석에 관한 연구 (A study on design of optimal structure of TEM cell for the characteristic impedance matching and analysis of the electric field distribution)

  • 정성영;이중근
    • 전자공학회논문지A
    • /
    • 제33A권7호
    • /
    • pp.99-110
    • /
    • 1996
  • In this paper, the analysis o fthe electric field distribution for TEM cell which is matched iwth 50 is performed, and the relations of variables for characteristic impedance are derived. Quasi-static approximations are used to calculate the fiedl strength of the internal field of TEM cell. The results of the improved method for analysis of the electric field is compared with that of R.J. Spigel. and the improved method for characteristic impedance and the results of numerical analysis are shown.

  • PDF

세포동영상의 자동분석을 위한 효율적인 세포추적방법 (Efficient Cell Tracking Method for Automatic Analysis of Cellular Sequences)

  • 한찬희;송인환;이시웅
    • 한국콘텐츠학회논문지
    • /
    • 제11권5호
    • /
    • pp.32-40
    • /
    • 2011
  • 저속촬영이 가능한 현미경을 통해 얻어진 세포동영상에서 세포활동의 추적 및 분석은 종양의 전이, 바이러스의 침입, 상처회복, 세포분열과 같은 복잡한 생물학적 과정을 이해하는데 있어 매우 중요한 역할을 담당한다. 세포추적의 자동화를 위해서는 각 프레임에서의 세포검출, 전후 프레임 내 세포들의 상관관계 조사, 새로운 세포의 인식 및 세포분열의 확인 등과 같은 일련의 작업들이 수행되어야 한다. 본 논문에서는 이를 위한 효과적인 자동 세포 추적 알고리즘을 제시한다. 첫 번째 프레임에서는 세포영역의 특성 분석을 통해 얻어진 특징벡터를 이용하여 각 세포의 마커 영역을 추출하고, 여기에 워터쉐드 알고리즘을 적용함으로써 세포 분할을 수행한다. 연속된 프레임들에서는 이전 프레임의 분할결과를 이용하여 현재 프레임에서의 분할 과정이 수행된다. 그리고 각 세포의 기하학적 특성과 밝기 특성의 결합 비용함수를 사용하여 전후 프레임 간 세포의 올바른 상관관계를 조사함으로써 세포 추적의 정확도를 개선한다. 실험에서 세포영상 분석을 위한 소프트웨어 패키지인 CellProfiler와의 비교/분석을 통해 제안 알고리즘의 효율성을 입증하였다.

Ambient Mass Spectrometry in Imaging and Profiling of Single Cells: An Overview

  • Bharath Sampath Kumar
    • Mass Spectrometry Letters
    • /
    • 제14권4호
    • /
    • pp.121-140
    • /
    • 2023
  • It is becoming more and more clear that each cell, even those of the same type, has a unique identity. This sophistication and the diversity of cell types in tissue are what are pushing the necessity for spatially distributed omics at the single-cell (SC) level. Single-cell chemical assessment, which also provides considerable insight into biological, clinical, pharmacodynamic, pathological, and toxicity studies, is crucial to the investigation of cellular omics (genomics, metabolomics, etc.). Mass spectrometry (MS) as a tool to image and profile single cells and subcellular organelles facilitates novel technical expertise for biochemical and biomedical research, such as assessing the intracellular distribution of drugs and the biochemical diversity of cellular populations. It has been illustrated that ambient mass spectrometry (AMS) is a valuable tool for the rapid, straightforward, and simple analysis of cellular and sub-cellular constituents and metabolites in their native state. This short review examines the advances in ambient mass spectrometry (AMS) and ambient mass spectrometry imaging (AMSI) on single-cell analysis that have been authored in recent years. The discussion also touches on typical single-cell AMS assessments and implementations.

Effect of Fructus ligustri Lucidi Extract on Cell Viability in Human Glioma Cells

  • Kim, Jin-Won;Jeong, Ji-Cheon
    • 동의생리병리학회지
    • /
    • 제23권1호
    • /
    • pp.199-205
    • /
    • 2009
  • It is unclear whether Fructus ligustri Lucidi (FLL) extract anti-proliferative effect in human glioma cells. The present study was therefore undertaken to examine the effect of FLL on cell viability and to determine the underlying mechanism in A172 human glioma cells. Cell viability and cell death were estimated by MTT assay and trypan blue exclusion assay, respectively. Apoptosis was measured by Annexin-V binding assay and cell cycle analysis. Activation of kinases and caspase-3 was estimated by Western blot analysis. FLL resulted in apoptotic cell death in a dose- and time-dependent manner. FLL-induced cell death was not associated with reactive oxygen species generation. Western blot analysis showed that FLL treatment caused down-regulation of PI3K/Akt pathway, but not ERK. The PI3K/Akt inhibitor LY984002 sensitized the FLL-induced cell death and overexpression of Akt prevented the cell death. FLL induced caspase-3 activation and the FLL-induced cell death was prevented by caspase inhibitors. These findings indicate that FLL results in a caspase-dependent cell death through a P13K/Akt pathway in human glioma cells. These data suggest that FLL may serve as a potential therapeutic agent for malignant human gliomas.