• Title/Summary/Keyword: Cell Tracking

Search Result 271, Processing Time 0.031 seconds

In Vivo Non Invasive Molecular Imaging for Immune Cell Tracking in Small Animals

  • Youn, Hyewon;Hong, Kee-Jong
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.223-229
    • /
    • 2012
  • Clinical and preclinical in vivo immune cell imaging approaches have been used to study immune cell proliferation, apoptosis and interaction at the microscopic (intra-vital imaging) and macroscopic (whole-body imaging) level by use of ex vivo or in vivo labeling method. A series of imaging techniques ranging from non-radiation based techniques such as optical imaging, MRI, and ultrasound to radiation based CT/nuclear imaging can be used for in vivo immune cell tracking. These imaging modalities highlight the intrinsic behavior of different immune cell populations in physiological context. Fluorescent, radioactive or paramagnetic probes can be used in direct labeling protocols to monitor the specific cell population. Reporter genes can also be used for genetic, indirect labeling protocols to track the fate of a given cell subpopulation in vivo. In this review, we summarized several methods dealing with dendritic cell, macrophage, and T lymphocyte specifically labeled for different macroscopic whole-body imaging techniques both for the study of their physiological function and in the context of immunotherapy to exploit imaging-derived information and immune-based treatments.

The Tracking Photovoltaic System by One sensor Type (One sensor방식의 추적식 PV System)

  • Ko, Jae-Hong;Park, Jeong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4733-4739
    • /
    • 2012
  • While traditional two-axis tracking systems with double sensors had been using two sensors to control azimuth and elevation angle of the sun so that a solar cell module would make a normal line with the sun, this paper proposed a new two-axis system that can achieve the same performance with only one sensor in it. It is Two-axis tracking system that control azimuth and elevation to control to be reduced for solar cell module as proposed tracking system uses 1 sensors and the sun always forms normal. Two-axis tracking system of one sensor method that propose in paper that could reduce electric power consumption and sees than fixed type preventing action and the most efficient driving and needless drive could confirm that generation efficiency of about 23 [%] increases. To heighten efficiency of solar cell doing to receive more sunlights chasing the sun, done tracking device have proceeded a lot of studies in large size way. Therefore, is expected that will do big part in the sun tracking supply through utility study about persistent generation efficiency constructing monitoring system of the sun tracking of this paper.

Design of Sun Tracker System for Solar Power Generation (태양광 발전을 위한 태양추적시스템 설계)

  • An, Jun-Sik;Heo, Nam-Euk;Kim, Il-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.330-332
    • /
    • 2006
  • In this paper, sun tracking system using Sun position sensor is proposed, the sun tracking system designed as which raises the efficiency of solar power generation. It design the structure being simple and it develops the system which is economical efficiency. It develops the hazard technique such as location tracking method of the sun which uses the sensor and to use the motor solar cell module movement. The Sun tracking system makes the drive in order to do with one axis and to use the sensor and to know in order to put out, the location of the sun and it makes. To make the solar location tracking sensor where the structure is simple it used two solar cells.

  • PDF

A Study on TRIZ Applied Design for Photovoltaic System with Reversal Tracking Reflector (역추적식 반사체를 가진 태양광 발전 시스템의TRIZ(6SC) 응용 설계)

  • Huh, Yong Jeong;Hong, Sung Do
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.3
    • /
    • pp.27-31
    • /
    • 2012
  • This paper presents a study on the design of photovoltaic system with reversal tracking reflector. The reversal tracking reflector is conceptually designed by using TRIZ. The 20 to 30% of incident rays cannot produce the current and reflected back to the glass surface because of high refractive index of solar cell which are produced from Si, GaAs. The solution of this problem has been derived using 6SC(6 steps creativity)TRIZ. The reflector which has the actuator can be trackback the sun. Reversal tracking reflector which mounted on the top of the system prevents the shadowing loss and improve the efficiency of track back function. The anti-glare reflector prevents the heat due to the concentrated reflected light rays.

Automated Cell Counting Method for HeLa Cells Image based on Cell Membrane Extraction and Back-tracking Algorithm (세포막 추출과 역추적 알고리즘 기반의 HeLa 세포 이미지 자동 셀 카운팅 기법)

  • Kyoung, Minyoung;Park, Jeong-Hoh;Kim, Myoung gu;Shin, Sang-Mo;Yi, Hyunbean
    • Journal of KIISE
    • /
    • v.42 no.10
    • /
    • pp.1239-1246
    • /
    • 2015
  • Cell counting is extensively used to analyze cell growth in biomedical research, and as a result automated cell counting methods have been developed to provide a more convenient and means to analyze cell growth. However, there are still many challenges to improving the accuracy of the cell counting for cells that proliferate abnormally, divide rapidly, and cluster easily, such as cancer cells. In this paper, we present an automated cell counting method for HeLa cells, which are used as reference for cancer research. We recognize and classify the morphological conditions of the cells by using a cell segmentation algorithm based on cell membrane extraction, and we then apply a cell back-tracking algorithm to improve the cell counting accuracy in cell clusters that have indistinct cell boundary lines. The experimental results indicate that our proposed segmentation method can identify each of the cells more accurately when compared to existing methods and, consequently, can improve the cell counting accuracy.

Development of Multi-flat Reflector Sun Tracking System for Sun Photocell Maximum Power Generation (태양전지 최대전력 발생을 위한 다 평면 반사경 태양추적시스템 개발)

  • Lee, Kang-Sin;Lee, Hyun-Seog;Yoo, Seok-Ju;Park, Wal-Seo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.67-72
    • /
    • 2011
  • Recently, photovoltaic generator system is widely extended by energy policy of the government. Add to this, for high efficiency of power generation per natural light unit area is needed to sun tracking system. And it is needed to condensed light generator for reducer of equipment expense. As method of solving this problem, this paper is developed multi-flat reflector sun tracking system for sun photocell maximum power generation. The system is consisted of multi-flat reflector and two axes machinery and sun location perceiver and AVR controller. GaAs 3J cell generated 6.75 times power more than silicon cell by times condensing light system. As a result, condensing light system of multi-flat reflector generated maximum power and showed reducing costs to photovoltaic generator.

A Study on the N-Path SC Tracking Filter using PLL (PLL을 이용한 N-Path SC추적여파기에 관한 연구)

  • Jung, Sung-Hwan;Son, Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.8 no.3
    • /
    • pp.83-90
    • /
    • 1983
  • N-path SC tracking filter is studied beyond the audio frequency range. First, the SC filter Cell which would determine total SC filter characteristics is analyzed by the two methods, charge equation method and difference equation method. Second, 4-path and 8-path SC filter are presented, including only capacitors and switches. Then, 4-path and 8-path SC tracking filter are constructed by conisting of SC filter block and PLL block. In this experiment, maximum response shift is confirmed. With respect to the capacitor ratios and the number of path, Q and Gain(dB) is considered. Also tracking range is measured.

  • PDF

Development of Convective Cell Identification and Tracking Algorithm using 3-Dimensional Radar Reflectivity Fields (3차원 레이더 반사도를 이용한 대류세포 판별과 추적 알고리즘의 개발)

  • Jung, Sung-Hwa;Lee, GyuWon;Kim, Hyung-Woo;Kuk, BongJae
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.243-256
    • /
    • 2011
  • This paper presents the development of new algorithm for identifying and tracking the convective cells in three dimensional reflectivity fields in Cartesian coordinates. First, the radar volume data in spherical coordinate system has been converted into Cartesian coordinate system by the bilinear interpolation. The three-dimensional convective cell has then been identified as a group of spatially consecutive grid points using reflectivity and volume thresholds. The tracking algorithm utilizes a fuzzy logic with four membership functions and their weights. The four fuzzy parameters of speed, area change ratio, reflectivity change ratio, and axis transformation ratio have been newly defined. In order to make their membership functions, the normalized frequency distributions are calculated using the pairs of manually matched cells in the consecutive radar reflectivity fields. The algorithms have been verified for two convective events in summer season. Results show that the algorithms have properly identified storm cells and tracked the same cells successively. The developed algorithms may provide useful short-term forecasting or nowcasting capability of convective storm cells and provide the statistical characteristics of severe weather.

Line Tracking Algorithm for Table Structure Analysis in Form Document Image (양식 문서 영상에서 도표 구조 분석을 위한 라인 추적 알고리즘)

  • Kim, Kye-Kyung
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.2
    • /
    • pp.151-159
    • /
    • 2021
  • To derive grid lines for analyzing a table layout, line image enhancement techniques are studying such as various filtering or morphology methods. In spite of line image enhancement, it is still hard to extract line components and to express table cell's layout logically in which the cutting points are exist on the line or the tables are skewing . In this paper, we proposed a line tracking algorithm to extract line components under the cutting points on the line or the skewing lines. The table document layout analysis algorithm is prepared by searching grid-lines, line crossing points and gird-cell using line tracking algorithm. Simulation results show that the proposed method derive 96.4% table document analysis result with average 0.41sec processing times.

Adult stem cell lineage tracing and deep tissue imaging

  • Fink, Juergen;Andersson-Rolf, Amanda;Koo, Bon-Kyoung
    • BMB Reports
    • /
    • v.48 no.12
    • /
    • pp.655-667
    • /
    • 2015
  • Lineage tracing is a widely used method for understanding cellular dynamics in multicellular organisms during processes such as development, adult tissue maintenance, injury repair and tumorigenesis. Advances in tracing or tracking methods, from light microscopy-based live cell tracking to fluorescent label-tracing with two-photon microscopy, together with emerging tissue clearing strategies and intravital imaging approaches have enabled scientists to decipher adult stem and progenitor cell properties in various tissues and in a wide variety of biological processes. Although technical advances have enabled time-controlled genetic labeling and simultaneous live imaging, a number of obstacles still need to be overcome. In this review, we aim to provide an in-depth description of the traditional use of lineage tracing as well as current strategies and upcoming new methods of labeling and imaging.