• Title/Summary/Keyword: Cell Temperature

Search Result 4,500, Processing Time 0.027 seconds

Biochemical Changes in Sugars and Cell Wall Degrading Enzymes during Ripening of Banana

  • Lee, Min-Kyung;Kim, Mi-Jeong;Park, Inshik
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.1
    • /
    • pp.92-94
    • /
    • 2004
  • Changes in reducing sugar and cell wall degrading enzymes during ripening of banana for 10 days were investigated. The amount of reducing sugar in bananas increased during storage at room temperature during the first 7 days, and decreased thereafter. However, starch content in banana decreased during ripening, and invertase and cell wall degrading enzymes such as cellulase, polygalacturonase and xylanase were most active after bananas were stored for 7 days at room temperature. When the bananas were stored at 4$^{\circ}C$, the magnitude of changes were much less than during room temperature storage.

Use of High-Temperature Gas-Tight Electrochemical

  • Park, Jong-Hee;Beihai Ma;Park, Eun-Tae
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.103-113
    • /
    • 1998
  • By using a gas-tight electrochemical cell, we can perform high-temperature coulometric titration and measure electronic transport properties to determine the elecronic defect structure of metal oxides. This technique reduces the time and expense required for conventional thermogravimetric measurements. The components of the gas-tight coulometric titration cell are an oxygen sensor, Pt/yttria stabilitized zirconia(YSZ)/Pt, and an encapsulated metal oxide sample. Based on cell design, both transport and thermodynamic measurements can be performed over a wide range of oxygen partial pressure ($pO_2=10^{-35}$ to 1 atm). This paper describes the high-temperature gas-tight electrochemical cells used to determine electronic defect structures and transport properties for pure and doped-oxide systems, such as YSZ, doped and pure ceria $(Ca-CeO_2 \;and\; CeO_2)$, copper oxides and copper-oxide-based ceramic superconductors, transition metal oxides, $SrFeCo_{0.5}O_x,\; and \;BaTiO_2$.

  • PDF

Development of Metal Substrate with Multi-Stage Nano-Hole Array for Low Temperature Solid Oxide Fuel Cell (저온 고체산화물연료전지 구현을 위한 다층 나노기공성 금속기판의 제조)

  • Kang, Sangkyun;Park, Yong-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.865-871
    • /
    • 2005
  • Submicron thick solid electrolyte membrane is essential to the implementation of low temperature solid oxide fuel cell, and, therefore, development of new electrode structures is necessary for the submicron thick solid electrolyte deposition while providing functions as current collector and fuel transport channel. In this research, a nickel membrane with multi-stage nano hole array has been produced via modified two step replication process. The obtained membrane has practical size of 12mm diameter and $50{\mu}m$ thickness. The multi-stage nature provides 20nm pores on one side and 200nm on the other side. The 20nm side provides catalyst layer and $30\~40\%$ planar porosity was measured. The successful deposition of submicron thick yttria stabilized zirconia membrane on the substrate shows the possibility of achieving a low temperature solid oxide fuel cell.

Prediction of MCFC Performance Using Three Dimensional Heat and fluid Flow Analysis with Electrochemical Reaction (전기 화학 반응을 포함한 3차원 열유동 해석을 이용한 용융탄산염 연료전지의 성능예측)

  • Cho H. M.;Lee K. W.;Choi D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.219-224
    • /
    • 2003
  • An analysis procedure for the MCFC channel flow has been developed to predict the fuel cell performance. As for the electrochemical reaction, among several chemical reaction models, one that fits the data best is adopted after a comprehensive comparative study. The Wavier-Stokes, energy, and species equations are solved to obtain the velocity, temperature and concentration fields for a specified average current density. The procedure is iterative as the local current density, or the reaction rate, is allowed to vary with the gas composition. A series of calculations are then carried out to examine the effects of gas flow rate, gas composition, gas usage rate, inlet gas temperature, and average current density on the fuel cell performance. The fuel cell characteristics, such as the temperature, current density distributions, and the concentration fields, for various operating conditions are presented and discussed.

  • PDF

Thermal Stress Analysis on the Solid Oxide Fuel Cell according to Operating Temperature

  • Kwon, Oh-Heon;Kang, Ji-Woong;Jo, Se-Jin
    • International Journal of Safety
    • /
    • v.10 no.1
    • /
    • pp.1-4
    • /
    • 2011
  • The fuel cell is one of the green energy receiving a lot of attention. Among the fuel cells, it is generally referred to SOFC(solid oxide fuel cell) which is made up composites of a solid. SOFC has excellent merits in the side of environment and energy. However because of the high operating temperature, it has economic loss by the using of expensive materials and problems of structural instability by thermal stresses. Therefore, this study aims to the effect of analysis by the FEMLAB. The results have deformations and the maximum stresses from the variation of the thickness of vulnerability spots. The deformation shows expansion as 0.82% and the stress ${\sigma}_{xx}$ is 392MPa in electrolyte and -56.31MPa in anode. When increasing or decreasing the thickness to 50% of the reference thickness about the electrolyte which is vulnerable spots.

  • PDF

Measurement of Thermal Flow in a Hele-Shaw Convection Cell Using Holographic Interferometry and PIV Technique (홀로그래픽 간섭계와 PIV를 이용한 Hele-Shaw Convection Cell 내부 열유동 해석)

  • Kim Seok;Lee Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.35-38
    • /
    • 2002
  • Variations of temperature and velocity fields in a Hele-Shaw Convection Cell (HSC) were measured using a holographic interferometry and PIV technique with varying Rayleigh number. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow at high Rayleigh numbers. Two different measurement methods of holographic interferometry, double-exposure method and real-time method, were employed to measure the temperature field variations of HSC convective flow. In the double-exposure method, unwanted waves can be eliminated and reconstruction images are clear, but transient flow structure cannot be observed clearly. On the other hand, transient flow can be observed and reconstructed well using the real-time method. PIV results show that flow inside the HSC is periodic and the oscillating state is well matched with the temperature field results. The holographic interferometry and PIV techniques employed in this study are useful for analyzing the unsteady convective thermal fluid flows.

  • PDF

Design Performance Analysis of Solid Oxide Fuel Cell/Gas Turbine Hybrid Systems for Various Gas Turbine Pressure Ratios (가스터빈 압력비 변화에 따른 고체 산화물 연료전지/가스터빈 하이브리드 시스템의 설계 성능 해석)

  • Park, Sung-Ku;Kim, Tong-Seop
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.885-890
    • /
    • 2006
  • This study presents analysis results for the hybrid system combining solid oxide fuel cell and gas turbine. Two different system layouts(an ambient pressure system and pressurized system) are considered and their design performance are comparatively investigated taking into account critical design factor, the most critical parameter such as turbine inlet temperature, gas turbine pressure ratio, temperature difference at the fuel cell and fuel cell operating temperature are considered as design constraints. Performance variations according to system layout and design parameters are examined in energetic view point.

  • PDF

Effect of Temperature and Humidity on the Performance Factors of a 15-W Proton Exchange Membrane Fuel Cell

  • Dien Minh Vu;Binh Hoa Pham;Duc Pham Xuan;Dung Nguyen Dinh;Vinh Nguyen Duy
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.241-246
    • /
    • 2023
  • Fuel cells are one of the renewable energy sources that have sparked a lot of scientific attention for solving problems related to the energy crisis and environmental pollution. One of the most crucial subjects concerning the utilization of fuel cells is modeling. Therefore, an analytical steady-state and dynamic fuel cell model was described in this study. The parameter for the identification process was investigated, and the MATLAB/Simulink implementation was demonstrated. A 15-W proton exchange membrane fuel cell was used to apply the suggested modeling methodology. Comparing experimental and simulation findings indicated that the model error was constrained to 3%. This study showed that temperature and humidity affect fuel cell performance.

Effect of Degraded Al-doped ZnO Thin Films on Performance Deterioration of CIGS Solar Cell (고온 및 고온고습 환경 내에서 ZnO:Al 투명전극의 열화가 CIGS 박막형 태양전지의 성능 저하에 미치는 영향)

  • Kim, Do-Wan;Lee, Dong-Won;Lee, Hee-Soo;Kim, Seung-Tae;Park, Chi-Hong;Kim, Yong-Nam
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.328-333
    • /
    • 2011
  • The influence of Al-doped ZnO (AZO) thin films degraded under high temperature and damp heat on the performance deterioration of Cu(In,Ga)$Se_2$ (CIGS) solar cells was investigated. CIGS solar cells with AZO/CdS/CIGS/Mo structure were prepared on glass substrate and exposed to high temperature ($85^{\circ}C$) and damp heat ($85^{\circ}C$/85% RH) for 1000 h. As-prepared CIGS solar cells had 64.91% in fill factor (FF) and 12.04% in conversion efficiency. After exposed to high temperature, CIGS solar cell had 59.14% in FF and 9.78% in efficiency, while after exposed to damp heat, it had 54.00% in FF and 8.78% in efficiency. AZO thin films in the deteriorated CIGS solar cells showed increases in resistivity up to 3.1 times and 4.4 times compared to their initial resistivity after 1000 h of high temperature and damp heat exposure, respectively. These results can be explained by the decreases in carrier concentration and mobility due to diffusion or adsorption of oxygen and moisture in AZO thin films. It can be inferred that decreases in FF and conversion efficiency were caused by an increase in series resistance, which resulted from an increase in resistivity of AZO thin films degraded under high temperature and damp heat.

Design of LQR Controller for Thermal Management System of 5kW Solid Oxide Fuel Cell (5kW급 고체 산화물 연료전지 열관리 계통 LQR 상태 궤환 제어기 설계)

  • Jeong, Jin Hee;Han, Jae Young;Sung, Yong Wook;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.505-511
    • /
    • 2015
  • Solid oxide fuel cell operate at high temperature ($800{\sim}1000^{\circ}C$). High temperature have an advantage of system efficiency, but a weak durability. In this study, linear state space controller is designed to handle the temperature of solid oxide fuel cell system for proper thermal management. System model is developed under simulink environment with Thermolib$^{(R)}$. Since the thermally optimal system integration improves efficiency, very complicated thermal integration approach is selected for system integration. It shows that temperature response of fuel cell stack and catalytic burner are operated at severe non-linearity. To control non-linear temperature response of SOFC system, gain scheduled linear quadratic regulator is designed. Results shows that the temperature response of stack and catalytic burner follows the command over whole ranges of operations.