• Title/Summary/Keyword: Cell Senescence

Search Result 197, Processing Time 0.029 seconds

UBE2Q1 in a Human Breast Carcinoma Cell Line: Overexpression and Interaction with p53

  • Shafiee, Sayed Mohammad;Rasti, Mozhgan;Seghatoleslam, Atefeh;Azimi, Tayebeh;Owji, Ali Akbar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3723-3727
    • /
    • 2015
  • The p53 tumor suppressor protein is a principal mediator of growth arrest, senescence, and apoptosis in response to a broad array of cellular damage. p53 is a substrate for the ubiquitin-proteasome system, however, the ubiquitin-conjugating enzymes (E2s) involved in p53 ubiquitination have not been well studied. UBE2Q1 is a novel E2 ubiquitin conjugating enzyme gene. Here, we investigated the effect of UBE2Q1 overexpression on the level of p53 in the MDA-MB-468 breast cancer cell line as well as the interaction between UBE2Q1 and p53. By using a lipofection method, the p53 mutated breast cancer cell line, MDA-MB-468, was transfected with the vector pCMV6-AN-GFP, containing UBE2Q1 ORF. Western blot analysis was employed to verify the overexpression of UBE2Q1 in MDA-MB-468 cells and to evaluate the expression level of p53 before and after cell transfection. Immunoprecipitation and GST pull-down protocols were used to investigate the binding of UBE2Q1 to p53. We established MDA-MB-468 cells that transiently expressed a GFP fusion proteins containing UBE2Q1 (GFP-UBE2Q1). Western blot analysis revealed that levels of p53 were markedly lower in UBE2Q1 transfected MDA-MB-468 cells as compared with control MDA-MB-468 cells. Both in vivo and in vitro data showed that UBE2Q1 co-precipitated with p53 protein. Our data for the first time showed that overexpression of UBE2Q1can lead to the repression of p53 in MDA-MB-468 cells. This repression of p53 may be due to its UBE2Q1 mediated ubiquitination and subsequent proteasome degradation, a process that may involve direct interaction of UBE2Q1with p53.

The Effect of Hydrolyzed Jeju Ulva pertusa on the Proliferation and Type I Collagen Synthesis in Replicative Senescent Fibroblasts (제주 구멍갈파래 가수분해물에 의한 노화된 섬유아세포 증식 및 콜라겐 합성증진 효과)

  • Ko, Hyun Ju;Kim, Gyoung Bum;Lee, Dong Hwan;Lee, Geun Soo;Pyo, Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.3
    • /
    • pp.177-186
    • /
    • 2013
  • Skin dermal fibroblast is the major collagen-producing cell type in human skin. As aging process continues in human skin, collagen production is reduced and fragmentation is increased, which is initiated by matrix metalloproteinase-1 (MMP-1). This imbalance of collagen homeostasis impairs the structure and function of dermal collagenous extracellular matrix (ECM), thereby promoting skin aging. Cysteine-rich protein 61 (CCN1), a member of the CCN family, negatively regulates collagen homeostasis in primary human skin dermal fibroblast cells. It is known in aging fibroblast cells that elevated CCN1 expression substantially reduces type I procollagen and concurrently increases MMP-1, which initiates fibrillar collagen degradation. And proliferation rate of aging fibroblast cells is reduced compared to the pre-aging fibroblast cells. In this study, we confirmed that the replicative senescence dermal fibroblast cells increased the expression levels of MMP-1 and decreased the production of type I procollagen. Our results also showed that the replicative senescence dermal fibroblast cells increased in the expression of CCN1 and decreased in the proliferation rate. Hydrolyzed Ulva pertusa extracts are the materials to improve photo-aging by reducing the expression of MMP-1 that was increased by ultraviolet and by promoting the synthesis of new collagen from fibroblast cells. In this study, we also investigated the hydrolyzed U. pertusa extract to see whether it inhibits CCN1 protein expression in the senescence fibroblasts. Results showed that the hydrolyzed U. pertusa extract inhibited the expression of MMP-1 and increased the production of type I procollagen in the aging skin fibroblast cells cultured. In addition, the proteins that regulate collagen homeostasis CCN1 expression were greatly reduced. The hydrolyzed U. pertusa extract increased the proliferation rate of the aging fibroblast cells. These results suggest that replicative senescent fibroblast cells may be used in the study of cosmetic ingredients as a model of the natural aging. In conclusion, the hydrolyzed U. pertusa extract can be used in anti-wrinkle functional cosmetic material to improve the natural aging skin care as well as photo-aging.

Comparative Analysis on Anti-aging, Anti-adipogenesis, and Anti-tumor Effects of Green Tea Polyphenol Epigallocatechin-3-gallate (녹차의 폴리페놀류인 에피갈로카테킨-3-갈레이트에 의한 항노화, 항비만 및 항암효과에 대한 비교 분석)

  • Lim, Eun-Ji;Kim, Min-Jae;Kim, Hyeon-Ji;Lee, Sung-Ho;Jeon, Byeong-Gyun
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1201-1211
    • /
    • 2018
  • The study compared the anti-aging, anti-adipogenesis, and anti-tumor effects of epigallocatechin-3- gallate (EGCG) in various cancer cell lines (SNU-601, MKN74, AGS, MCF-7, U87-MG, and A-549) and normal cell lines (MRC-5 fibroblasts, dental tissue-derived mesenchymal stem cells [DSC], and 3T3-L1 pro-adipocytes). Half inhibitory concentration ($IC_{50}$) values were significantly (p<0.05) higher in normal cell lines (~50 uM), when compared to that in cancer cell lines (~10 uM). For anti-aging effects, MRC-5 and DSC were exposed to 10 uM EGCG for up to five passages that did not display any growth arrest. Population doubling time and senescence-related ${\beta}-galactosidase$ ($SA-{\beta}-gal$) activity in treated cells were similar to untreated cells. For anti-adipogenic effects, mouse 3T3-L1 pre-adipocytes were induced to adipocytes in an adipogenic differentiation medium containing 10 uM EGCG, but adipogenesis in 3T3-L1 cells was not inhibited by EGCG treatment. For anti-tumor effects, the cancer cell lines were treated with 10 uM EGCG. PDT was significantly (p<0.05) increased in EGCG-treated SNU-601, AGS, MCF-7, and U87-MG cancer cell lines, except in MKN74 and A-549. The level of telomerase activity and cell migration capacity were significantly (p<0.05) reduced, while $SA-{\beta}-gal$ activity was highly up-regulated in EGCG treated-cancer cell lines, when compared to that in untreated cancer cell lines. Our results have demonstrated that EGCG treatment induces anti-tumor effects more efficiently as noted by decreased cell proliferation, cell migration, telomerase activity, and increased $SA-{\beta}-gal$ activity than inducing anti-aging and anti-adipogenesis. Therefore, EGCG at a specific concentration can be considered for a potential anti-tumor drug.

The Effects of Genistein on the Proliferation and Type I pN Collagen Synthesis in Aged Normal Human Fibroblasts (제니스테인에 의한 노화된 피부세포 활성화와 콜라겐 생성 효과)

  • Yang, Eun-Soon;Hong, Ran-Hi;Kang, Sang-Mo
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.4
    • /
    • pp.316-324
    • /
    • 2007
  • We studied the effects of genistein obtained from glycolysis of genistin, a kind of phytoestrogen present in soybeans, on cell proliferation and type I pN collagen synthesis in normal human dermal fibroblasts(NHDF). Cell proliferation was increased significantly with genistein treatment at 54-year aged NHDF. Genistein increased cell proliferation more strongly in cells form old doner than young doner. The senescence-associated ${\beta}$-galatosidase activity was decreased in NHDF from 77-year old doner with genistein treatment. Type I pN collagen synthesis was increased with genistein treatement in UVA treated and non-treated NHDF. The increasement of collagen synthesis was more effective in aged cells than young cells. Type I pN collagen synthesis was also increased with genistein treatment in collagen matrix culture with NHDF from sun-exposed and non-exposed skin from 54-year old doner. Genistein treatment inhibited MMP-1 synthesis in old NHDF but not in young NHDF. In conclusion, genistein may be a useful agent for preventing intrinsic aging as well as photoaging.

Protective Effect of Rhus Semialata M. extract on Epidermal Stem Cells against UV Irradiation (자외선 조사된 상피 줄기세포에 대한 붉나무 추출물의 보호 효과)

  • Woo, Hyunjoo;You, Jiyoung;Park, Deokhoon;Jung, Eunsun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.4
    • /
    • pp.415-422
    • /
    • 2019
  • Human epidermal stem cells(ESCs) residing in the basement membrane of the skin have an important role in maintenance of skin homeostasis of epidermal layer. Although, ESCs provide new cells to repair damaged tissue in response to tissue injury, subsets of stem cells remain in the quiescent state protected from differentiation and senescence for prolonged survivals. In this perspective, the stem cell niche, which is specific microenvironment composed of niche cells and an extracellular matrix(ECM), supplies the relevant signal to save stem cells from microenvironmental damages. The expression of stemness marker on the surface of ESCs contributes to the attachment on their ECM of the basement membrane, which lead to growth potential and apoptotic resistance against environmental stimuli. In this study, we observed that UV irradiation, a major factor of environmental stimuli, reduced the expression of α2, β1 and α6 integrin in ESCs. Rhus Semialata M extract(RSE) showed inhibitory effect on the UVB-induced reduction of integrin expression. Furthermore, RSE could upregulate the expression of Col-IV and Laminin, which contribute to the attachment of ESCs. These results indicated that RSE could be a potent ingredient for the protection of ESCs from UV irradiation by increasing the expression of integrin and substrate ECM components at their niche.

Anti-proliferation Effect of Coscinoderma sp. Extract on Human Colon Cancer Cells (Coscinoderma sp.의 대장암세포 증식 억제 효과)

  • Choi, Ki Heon;Jung, Joohee
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.4
    • /
    • pp.294-298
    • /
    • 2016
  • Natural products are attractive as the source of new drug development. Especially, numerous unknown marine bioresources are an object of attention because the ocean occupies three fourth of the earth. Survival of marine bioresources in extreme environment may induce the production of biological active compounds. As previous study, we examined over 40 specimens of marine sponges collected from Micronesia and screened their anti-proliferative activities in various cancer cell lines. Among them, we investigated Coscinoderma sp.'s activity and mechanism in human colon carcinoma HCT116 and RKO cells. Furthermore, we also used the p53-knockout of HCT116 cells and the p53 loss of RKO cells for elucidating the role of p53. Coscinoderma sp. inhibited cellular viability independently of the p53 status. Therefore, we compared the expression level of cell death-related proteins by Coscinoderma sp. in HCT16 and in HCT116 p53KO cells. Coscinoderma sp. increased p53 level and NOXA levels and induced apoptosis under the condition of p53 existence. On the other hand, Coscinoderma sp. increased p21 and mTOR levels in HCT116 p53KO cells. These results suggest that Coscinoderma sp. induced anti-proliferation effect through different pathway depending on p53 status.

Preventive effects of crocin on neuronal damages induced by D-galactose through AGEs and oxidative stress in human neuroblastoma cells (SH-SY5Y)

  • Heidari, Somaye;Mehri, Soghra;Shariaty, Vahidesadat;Hosseinzadeh, Hossein
    • Journal of Pharmacopuncture
    • /
    • v.21 no.1
    • /
    • pp.18-25
    • /
    • 2018
  • Objective: D-galactose (D-gal) is well-known agent to induce aging process. In the present study, we selected crocin, the main constituent of Crocus sativus L. (saffron), against D-gal- induced cytotoxicity in human neuroblastoma SH-SY5Y cells. Methods: Pretreated cells with crocin ($25-500{\mu}M$, 24 h) were exposed to D-gal (25-400 mM, 48 h). The MTT assay was used for determination cell viability. Dichlorofluorescin diacetate assay (DCF-DA) and senescence associated ${\beta}$-galactosidase staining assay (SA-${\beta}$-gal) were used to evaluate the generation of reactive oxygen species and beta-galactosidase as an aging marker, respectively. Also advanced glycation end products (AGEs) expression which is known as the main mechanism of age-related diseases was measured by western blot analysis. Results: The findings of our study showed that treatment of cells with D-gal (25-400 mM) for 48h decreased cell viability concentration dependency. Reactive oxygen species (ROS) levels which are known as main factors in age-related diseases increased from $100{\pm}8%$ in control group to $132{\pm}22%$ in D-gal (200 mM) treated cells for 48h. The cytotoxic effects of D-gal decreased with 24h crocin pretreatment of cells. The cell viability at concentrations of $100{\mu}M$, $200{\mu}M$ and $500{\mu}M$ increased and ROS production decreased at concentrations of 200 and $500{\mu}M$ to $111.5{\pm}6%$ and $108{\pm}5%$, respectively. Also lysosomal biomarker of aging and carboxymethyl lysine (CML) expression as an AGE protein, significantly increased in D-gal 200 mM group after 48h incubation compare to control group. Pre-treatment of SHSY-5Y cells with crocin ($500{\mu}M$) before adding D-gal significantly reduced aging marker and CML formation. Conclusion: Treatment of SH-SY5Y cells with crocin before adding of D-gal restored aging effects of D-gal concentration dependency. These findings indicate that crocin has potent anti- aging effects through inhibition of AGEs and ROS production.

MHY2251, a New SIRT1 Inhibitor, Induces Apoptosis via JNK/p53 Pathway in HCT116 Human Colorectal Cancer Cells

  • Yong Jung Kang;Young Hoon Kwon;Jung Yoon Jang;Jun Ho Lee;Sanggwon Lee;Yujin Park;Hyung Ryong Moon;Hae Young Chung;Nam Deuk Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.73-81
    • /
    • 2023
  • Sirtuins (SIRTs) belong to the nicotinamide adenine dinucleotide (NAD+)-dependent class III histone deacetylase family. They are key regulators of cellular and physiological processes, such as cell survival, senescence, differentiation, DNA damage and stress response, cellular metabolism, and aging. SIRTs also influence carcinogenesis, making them potential targets for anticancer therapeutic strategies. In this study, we investigated the anticancer properties and underlying molecular mechanisms of a novel SIRT1 inhibitor, MHY2251, in human colorectal cancer (CRC) cells. MHY2251 reduced the viability of various human CRC cell lines, especially those with wild-type TP53. MHY2251 inhibited SIRT1 activity and SIRT1/2 protein expression, while promoting p53 acetylation, which is a target of SIRT1 in HCT116 cells. MHY2251 treatment triggered apoptosis in HCT116 cells. It increased the percentage of late apoptotic cells and the sub-G1 fraction (as detected by flow cytometric analysis) and induced DNA fragmentation. In addition, MHY2251 upregulated the expression of FasL and Fas, altered the ratio of Bax/Bcl-2, downregulated the levels of pro-caspase-8, -9, and -3 proteins, and induced subsequent poly(ADP-ribose) polymerase cleavage. The induction of apoptosis by MHY2251 was related to the activation of the caspase cascade, which was significantly attenuated by pre-treatment with Z-VAD-FMK, a pan-caspase inhibitor. Furthermore, MHY2251 stimulated the phosphorylation of c-Jun N-terminal kinase (JNK), and MHY2251-triggered apoptosis was blocked by pre-treatment with SP600125, a JNK inhibitor. This finding indicated the specific involvement of JNK in MHY2251-induced apoptosis. MHY2251 shows considerable potential as a therapeutic agent for targeting human CRC via the inhibition of SIRT1 and activation of JNK/p53 pathway.

TP53 Codon 72 Polymorphism and Risk of Acute Leukemia

  • Dunna, Nageswara Rao;Vure, Sugunakar;Sailaja, K.;Surekha, D.;Raghunadharao, D.;Rajappa, Senthil;Vishnupriya, S.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.347-350
    • /
    • 2012
  • TP53 is the mostly commonly mutated gene in many cancers and the P53 tumor suppressor protein is involved in multiple cellular processes, including transcription, DNA repair, genomic stability, senescence, cell cycle control and apoptosis. A common single nucleotide polymorphism located within the proline rich region of TP53 gene at codon 72 in exon 4 encodes either proline or arginine. TP53 Arg 72 is more active than TP53 Pro 72 in inducing apoptosis. The aim of this study was to understand the association of the 72 codon polymorphism with acute leukemia development and prognosis. A total of 288 acute leukemia cases comprising 147 acute lymphocytic leukemia (ALL) and 141 acute myeloid leukemia (AML), as well as 245 controls were recruited for analysis of the TP53 72 polymorphism using PCR-RFLP method. Significant association of homozygous arginine genotype with AML was observed (${\chi}^2$- 133.53; df-2, p < 0.001. When data were analyzed with respect to clinical variables, elevation in mean WBC, blast %, LDH levels and slight reduction in DFS in ALL cases with the arginine genotype was observed. In contrast, AML patients with Pro/Pro had elevated WBC, Blast%, LDH levels with slightly reduced DFS. Our study indicates that Arg/Arg genotype might confer increased risk to development of acute myeloid leukemia.

Effect of Gene actA on the Invasion Efficiency of Listeria monocytogenes, as Observed in Healthy and Senescent Intestinal Epithelial Cells

  • Ha, Jimyeong;Oh, Hyemin;Kim, Sejeong;Lee, Jeeyeon;Lee, Soomin;Lee, Heeyoung;Choi, Yukyung;Moon, Sung Sil;Choi, Kyoung-Hee;Yoon, Yohan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.59-64
    • /
    • 2018
  • Listeria monocytogenes can asymptomatically inhabit the human intestine as a commensal bacterium. However, the mechanism by which L. monocytogenes is able to inhabit the intestine without pathogenic symptoms remains unclear. We compared the invasion efficiency of L. monocytogenes strains with the 268- and 385-bp-long actA gene. Clinical strains SMFM-CI-3 and SMFM-CI-6 with 268-bp actA isolated from patients with listeriosis, and strains SMFM-SI-1 and SMFM-SI-2 with the 385-bp gene isolated from carcasses, were used for inoculum preparation. The invasion efficiency of these strains was evaluated using Caco-2 cells (intestinal epithelial cell line), prepared as normal and healthy cells with tightened tight junctions and senescent cells with loose tight junctions that were loosened by adriamycin treatment. The invasion efficiency of L. monocytogenes strains with the 268-bp-long actA gene was 1.1-2.6-times lower than that of the strains with the 385-bp-long gene in normal and healthy cells. However, the invasion efficiency of both types of strains did not differ in senescent cells. Thus, L. monocytogenes strains with the 268-bp-long actA gene can inhabit the intestine asymptomatically as a commensal bacterium, but they may invade the intestinal epithelial cells and cause listeriosis in senescent cells.