• Title/Summary/Keyword: Cell Screening

Search Result 1,115, Processing Time 0.032 seconds

Screening for Various Herb Medicines Extracts HSV 1-2 (수종 한약 처방 전탕액(煎湯液)의 허피즈바이러스에 대한 효능 검색)

  • Lim, Seong-Woo
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.291-297
    • /
    • 2000
  • Objective : In order to find antiviral compounds against Herpes simplex virus type I(HSV-1) and II(HSV-2) from herb medicines, a convenient virus-induced cytopathic effect(CPE) inhibition assay was introduced. Methods : Fourteen purchased herbal medicines, and their toxicity of infected cell and anti-viral activities were evaluated. Among them, the major part of herbal medicines showed cell stability compared with the contrast. Results : Cytotoxic concentration (CC) of the $H_2O$ extracts of Hyongbangpaedoksan against HSV-1 and HSV-2 was 181.12. This is high level cytotoxic concentration compared with the contrast. Therefore, we assumed that the high level cytotoxic concentration of herbal medicine play a major role in improvement of antiviral activity at the first infective cell. But antiviral effect was unable to figure out for selective index(Sl)=CC50/EC50. The other herbal medicines were unable to showed potent anti-HSV activity. Conclusions : The antiviral activation using herbs in this thesis have unlimited objects, to select research object will help to show the direction of antiviral drug development that have less side effect and more excellent efficiency.

  • PDF

Screening of Differential Promoter Hypermethylated Genes in Primary Oral Squamous Cell Carcinoma

  • Khor, Goot Heah;Froemming, Gabrielle Ruth Anisah;Zain, Rosnah Binti;Abraham, Mannil Thomas;Thong, Kwai Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8957-8961
    • /
    • 2014
  • Background: Promoter hypermethylation leads to altered gene functions and may result in malignant cellular transformation. Thus, identification of biomarkers for hypermethylated genes could be useful for diagnosis, prognosis, and therapeutic treatment of oral squamous cell carcinoma (OSCC). Objectives: To screen hypermethylated genes with a microarray approach and to validate selected hypermethylated genes with the methylation-specific polymerase chain reaction (MSPCR). Materials and Methods: Genome-wide analysis of normal oral mucosa and OSCC tissues was conducted using the Illumina methylation microarray. The specified differential genes were selected and hypermethylation status was further verified with an independent cohort sample of OSCC samples. Candidate genes were screened using microarray assay and run by MSPCR analysis. Results: TP73, PIK3R5, and CELSR3 demonstrated high percentages of differential hypermethylation status. Conclusions: Our microarray screening and MSPCR approaches revealed that the signature candidates of differentially hypermethylated genes may possibly become potential biomarkers which would be useful for diagnostic, prognostic and therapeutic targets of OSCC in the near future.

A MALDI-MS-based Glucan Hydrolase Assay Method for Whole-cell Biocatalysis

  • Ahn, Da-Hee;Park, Han-Gyu;Song, Won-Suk;Kim, Seong-Min;Jo, Sung-Hyun;Yang, Yung-Hun;Kim, Yun-Gon
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.69-77
    • /
    • 2019
  • Screening microorganisms that can produce glucan hydrolases for industrial, environmental, and biomedical applications is important. Herein, we describe a novel approach to perform glucan hydrolase screening-based on analysis of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) spectra-which involves degradation of the oligo- and polysaccharides. As a proof-of-concept study, glucan hydrolases that could break down glucans made of several glucose units were used to demonstrate the MALDI-MS-based enzyme assay. First, the enzyme activities of ${\alpha}$-amylase and cellulase on a mixture of glucan oligosaccharides were successfully discriminated, where changes of the MALDI-MS profiles directly reflected the glucan hydrolase activities. Next, we validated that this MALDI-MS-based enzyme assay could be applied to glucan polysaccharides (i.e., pullulan, lichenan, and schizophyllan). Finally, the bacterial glucan hydrolase activities were screened on 96-well plate-based platforms, using cell lysates or samples of secreted enzyme. Our results demonstrated that the MALDI-MS-based enzyme assay system would be useful for investigating bacterial glucoside hydrolases in a high-throughput manner.

Development of a Test Method for the Evaluation of DNA Damage in Mouse Spermatogonial Stem Cells

  • Jeon, Hye Lyun;Yi, Jung-Sun;Kim, Tae Sung;Oh, Youkyung;Lee, Hye Jeong;Lee, Minseong;Bang, Jin Seok;Ko, Kinarm;Ahn, Il Young;Ko, Kyungyuk;Kim, Joohwan;Park, Hye-Kyung;Lee, Jong Kwon;Sohn, Soo Jung
    • Toxicological Research
    • /
    • v.33 no.2
    • /
    • pp.107-118
    • /
    • 2017
  • Although alternative test methods based on the 3Rs (Replacement, Reduction, Refinement) are being developed to replace animal testing in reproductive and developmental toxicology, they are still in an early stage. Consequently, we aimed to develop alternative test methods in male animals using mouse spermatogonial stem cells (mSSCs). Here, we modified the OECD TG 489 and optimized the in vitro comet assay in our previous study. This study aimed to verify the validity of in vitro tests involving mSSCs by comparing their results with those of in vivo tests using C57BL/6 mice by gavage. We selected hydroxyurea (HU), which is known to chemically induce male reproductive toxicity. The 50% inhibitory concentration ($IC_{50}$) value of HU was 0.9 mM, as determined by the MTT assay. In the in vitro comet assay, % tail DNA and Olive tail moment (OTM) after HU administration increased significantly, compared to the control. Annexin V, PI staining and TUNEL assays showed that HU caused apoptosis in mSSCs. In order to compare in vitro tests with in vivo tests, the same substances were administered to male C57BL/6 mice. Reproductive toxicity was observed at 25, 50, 100, and 200 mg/kg/day as measured by clinical measures of reduction in sperm motility and testicular weight. The comet assay, DCFH-DA assay, H&E staining, and TUNEL assay were also performed. The results of the test with C57BL/6 mice were similar to those with mSSCs for HU treatment. Finally, linear regression analysis showed a strong positive correlation between results of in vitro tests and those of in vivo. In conclusion, the present study is the first to demonstrate the effect of HU-induced DNA damage, ROS formation, and apoptosis in mSSCs. Further, the results of the current study suggest that mSSCs could be a useful model to predict male reproductive toxicity.

Can herbal drug(s) meet the challenges of genomewide screen results on rheumatoid arthritis

  • Paul, Bholanath
    • Advances in Traditional Medicine
    • /
    • v.5 no.4
    • /
    • pp.251-261
    • /
    • 2005
  • Rheumatoid arthritis (RA) is an autoimmune/inflammatory disorder with a complex genetic component. RA is characterized by chronic inflammation of the synovial membrane in the joint, which leads to the progressive destruction of articular cartilage, ligament and bone. Several cytokines such as tumor necrosis $factor-{\alpha}\;TNF-{\alpha}\;and\;interleukin-1{\beta}\;(IL-1{\beta})$ and interleukin-6 (IL-6) have been implicated in the pathological mechanisms of synovial tissue proliferation, joint destruction and programmed cell death in rheumatoid joint. Genome wide screening of subjects suffering from autoimmune diseases especially arthritis revealed linkage to inflammatory molecules like $TNF-{\alpha},\;IL-1{\beta}$ and IL-6, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-kappaB $(NF-{\kappa}B)$ and human leucocyte antigen/major histocompatibility complex (HLA/MHC) locus. The status of the pharmacological mechanism of herbal drugs in the light of genome wide screening results has been discussed to reinforce the therapeutic potential and the pharmacological basis of the herbal drugs.

Studies on the RBC Alloimmunization after Blood Transfusions

  • Kim Jae-Woo;Kim We-Jong
    • Biomedical Science Letters
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 2006
  • Alloimmunization to red blood cell (RBC) antigens may cause a delayed hemolytic transfusion reactions (DHTR) and a delayed serologic transfusion reactions (DSTR). In the present study, the frequency of alloimmunization and its clinical significance were evaluated. Also, transfusions were correlated with antibody formation. Alloimmunization rate was 0.63%. Alloimmunization rate in multiple transfused patients was 24.5%. The most common clinically significant alloantibodies of alloimmunized patients were found to be Rh antibodies (52.6%). Nine patients out of 38 (23.7%) became undetectable after the first detection. To be positive at antibody screening test after RBC transfusion was mean transfused numbers: 3.7 units, mean transfused periods: 56 days, mean transfused frequencies: 1.7 times. The results from antibody specificity and RBC transfusions were comparatively analyzed and it shows that Rh system antibodies were longer than other antibodies (P<0.05). In case of disease group, malignant diseases was longer than other diseases (P<0.05). In order to prevent the formation of RBC alloimmunization, irregular antibody screening tests were performed at propriety intervals in multiple transfused patients.

  • PDF

Screening of Transcriptional Regulator of the Draf Proto-oncogene Using the Yeast One-hybrid System

  • Park, So-Young;Park, Na-Hyun;Kwon, Eun-Jeong;Yoo, Mi-Ye
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.52-56
    • /
    • 1999
  • The Raf, a cytoplasmic serine/thereonine protein kinase, acts as an important mediator of signals involving cell proliferation, differentiation and development. Multiple regulatory elements should participate in the expression of D-raf, Drosophila homolog of human c-raf-1. In order to search regulatory factors involved in the D-raf promoter activation, we accomplished the yeast one-hybrid screening using D-raf promoter region from bp-330 to -309 with respect to the transcription initiation site as bait. After screening, sixteen independent positive clones of ${\beta}$-galactosidase activties were identified and sequenced. Two clones having 94-98% identity with daughterless and one clone having 93% identity with escargot by Blast search among these clones were screened.

High-Throughput In Vitro Screening of Changed Algal Community Structure Using the PhotoBiobox

  • Cho, Dae-Hyun;Cho, Kichul;Heo, Jina;Kim, Urim;Lee, Yong Jae;Choi, Dong-Yun;Yoo, Chan;Kim, Hee-Sik;Bae, Seunghee
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1785-1791
    • /
    • 2020
  • In a previous study, the sequential optimization and regulation of environmental parameters using the PhotoBiobox were demonstrated with high-throughput screening tests. In this study, we estimated changes in the biovolume-based composition of a polyculture built in vitro and composed of three algal strains: Chlorella sp., Scenedesmus sp., and Parachlorella sp. We performed this work using the PhotoBiobox under different temperatures (10-36℃) and light intensities (50-700 μmol m-2 s-1) in air and in 5% CO2. In 5% CO2, Chlorella sp. exhibited better adaptation to high temperatures than in air conditions. Pearson's correlation analysis showed that the composition of Parachlorella sp. was highly related to temperature whereas Chlorella sp. and Scenedesmus sp. showed negative correlations in both air and 5% CO2. Furthermore, light intensity slightly affected the composition of Scenedesmus sp., whereas no significant effect was observed in other species. Based on these results, it is speculated that temperature is an important factor in influencing changes in algal polyculture community structure (PCS). These results further confirm that the PhotoBiobox is a convenient and available tool for performance of lab-scale experiments on PCS changes. The application of the PhotoBiobox in PCS studies will provide new insight into polyculture-based ecology.

Role of CAGE, a Novel Cancer/Testis Antigen, in Various Cellular Processes, Including Tumorigenesis, Cytolytic T Lymphocyte Induction, and Cell Motility

  • Kim, Young-Mi;Jeoung, Doo-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.600-610
    • /
    • 2008
  • A cancer-associated antigen gene (CAGE) was identified by serological analysis of a recombinant cDNA expression library (SEREX). The gene was identified by screening cDNA expression libraries of human testis and gastric cancer cell lines with sera from patients with gastric cancer. CAGE was found to contain a D-E-A-D box domain and encodes a putative protein of 630 amino acids with possible helicase activity. The CAGE gene is widely expressed in various cancer tissues and cancer cell lines. Demethylation plays a role in the activation of CAGE in certain cancer cell lines where the gene is not expressed. The functional roles of CAGE in tumorigenesis, the molecular mechanisms of CAGE expression, and cell motility are also discussed.

Prenatal detection of Xq deletion by abnormal noninvasive prenatal screening, subsequently diagnosed by amniocentesis: A case report

  • Kim, Bo Ram;Kim, Rina;Cho, Angela;Kang, Hye Sim;Park, Chul Min;Kim, Sung Yob;Shim, Soon Sup
    • Journal of Genetic Medicine
    • /
    • v.18 no.2
    • /
    • pp.117-120
    • /
    • 2021
  • We experienced a case of Xq deletion -- 46,X,del(X)(q22.3) -- detected by abnormal noninvasive prenatal screening, subsequently diagnosed by amniocentesis. Genetic counseling was a challenge because there are few reports of prenatal diagnosis of Xq deletion. In each female cell, one X chromosome is inactivated at random early in development, and there may be a preferential inactivation of the abnormal X chromosome. But some proportions of genes escape inactivation. The most common manifestation in women with Xq deletion is primary or secondary ovarian failure. Critical regions for ovarian function may be located at the long arm of the X chromosome. But, the onset and the severity of ovarian failure may vary with diverse, intricate factors. We anticipate that noninvasive prenatal screening can identify the broader range of chromosomal or genetic abnormalities with the advances in technology and analytic methods. We report our case with a brief review of the literature.