• 제목/요약/키워드: Cell Outage Management

검색결과 10건 처리시간 0.034초

사용자 서비스 품질 보장을 위한 근접-최적 셀 아웃티지 관리 기법 (NoCOM: Near-Optimal Cell Outage Management for Guaranteeing User QoS)

  • 이기송;이호원
    • 한국정보통신학회논문지
    • /
    • 제19권4호
    • /
    • pp.794-799
    • /
    • 2015
  • 인도어 무선 통신 시스템에서 셀 아웃티지를 효율적으로 관리하기 위하여, 갑작스런 네트워크 결함을 신속하게 해결해야 한다. 본 논문에서는, 사용자들에게 끊김없는 서비스 제공을 위하여 근접-최적 셀 아웃티지 관리 (NoCOM: Near-Optimal Cell Outage Management) 기법을 제안한다. 시스템 용량, 사용자 공평성, 사용자 서비스 품질 보장 등을 동시에 고려하여, 제안 기법에서는 non-convex 최적화 문제를 기반으로 근접-최적 서브채널과 파워 해를 찾아 이를 사용자에게 반복적으로 할당한다. 시뮬레이션을 통하여 평균 셀 용량, 사용자 공평성, 계산 복잡도 관점에서 제안하는 기법의 우수성을 증명한다.

Approximating the Outage Probability of the Pilot Channel for IS-95-Based Cellular CDMA Systems in the Soft Handover Region

  • Park, Seung-Keun;Cho, Pyung-Dong;Park, Ki-Shik;Cho, Kyung-Rok
    • ETRI Journal
    • /
    • 제25권6호
    • /
    • pp.523-526
    • /
    • 2003
  • This letter presents an approximation of the outage probability of the pilot channel that can be used for CDMA cell planning. The approximation can determine system parameters for soft handover in IS-95-based cellular CDMA downlink design. Computer simulations show that our analytical results agree with empirical results.

  • PDF

Performance Analysis of a Cellular Networks Using Power Control Based Frequency Reuse Partitioning

  • Mohsini, Mustafa Habibu;Kim, Seung-Yeon;Cho, Choong-Ho
    • 한국통신학회논문지
    • /
    • 제40권3호
    • /
    • pp.559-567
    • /
    • 2015
  • This paper focuses on evaluating the performance of a cellular network using power control based frequency reuse partitioning (FRP) in downlink (DL). In our work, in order to have the realistic environment, the spectral efficiency of the system is evaluated through traffic analysis, which most of the previous works did not consider. To further decrease the cell edge user's outage, the concept of power ratio is introduced and applied to the DL FRP based cellular network. In considering network topology, we first divide the cell coverage area into two regions, the inner and outer regions. We then allocate different sub-bands in the inner and outer regions of each cell. In the analysis, for each zone ratio, the performance of FRP system is evaluated for the given number of power ratios. We consider performance metrics such as call blocking probability, channel utilization, outage probability and effective throughput. The simulation results show that there is a significant improvement in the outage experienced by outer UEs with power control scheme compared to that with no power control scheme and an increase in overall system throughput.

Efficient Radio Resource Management for Circuit and Packet Services using SIR Measurement

  • Lee, Gyongsu;Park, Sin-Chong
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -3
    • /
    • pp.1444-1446
    • /
    • 2002
  • In this paper, we propose a new algorithm to calculate the maximum amount of available resource while preventing the outage to the currently serviced users not only in the home cell but also in adjacent cells. The effect of resource management in adjacent cells is simulated.

  • PDF

Performance Analysis of S-SFR-based OFDMA Cellular Systems

  • Kim, Yi-Kang;Cho, Choong-Ho;Yoon, Seok-Ho;Kim, Seung-Yeon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권1호
    • /
    • pp.186-205
    • /
    • 2019
  • Intercell interference coordination (ICIC) is considered as a promising technique to increase the spectral efficiency of OFDMA cellular systems. The soft frequency reuse (SFR) and fractional frequency reuse (FFR) are representative and efficient management techniques for ICIC. Herein, to enhance the performance of the SFR scheme, we propose a call admission (CAC) scheme. In this CAC scheme, called Spectrum handoff-SFR(S-SFR), the spectrum handoff technique is applied to the user equipment (UE) located near the cell center. We derive the traffic analysis model to describe the S-SFR. In addition, a two-dimensional (2-D) Markov chain and an outage analysis are used in our analytical model. From the traffic analysis, the significant performance measures are the outage probability, call blocking probability, system throughput and resource utilization. Based on those, the outage probability and system throughput are obtained using resource utilization as an interference pattern. The analytical results are verified with computer simulation results. Finally, we compare our proposed scheme with other ICI schemes.

이동통신망 자가 치유를 위한 기계학습 연구동향 (Research Status on Machine Learning for Self-Healing of Mobile Communication Network)

  • 권동승;나지현
    • 전자통신동향분석
    • /
    • 제35권5호
    • /
    • pp.30-42
    • /
    • 2020
  • Unlike in previous generations of mobile technology, machine learning (ML)-based self-healing research trend are currently attracting attention to provide high-quality, effective, and low-cost 5G services that need to operate in the HetNets scenario where various wireless transmission technologies are added. Self-healing plays a vital role in detecting and mitigating the faults, and confirming that there is still room for improvement. We analyzed the research trend in self-healing framework and ML-based fault detection, fault diagnosis, and fault compensation. We propose that to ensure that self-healing is a proactive instead of being reactive, we have to design an ML-based self-healing framework and select a suitable ML algorithm for fault detection, diagnosis, and outage compensation.

Interference Aware Fractional Frequency Reuse using Dynamic User Classification in Ultra-Dense HetNets

  • Ban, Ilhak;Kim, Se-Jin
    • 인터넷정보학회논문지
    • /
    • 제22권5호
    • /
    • pp.1-8
    • /
    • 2021
  • Small-cells in heterogeneous networks are one of the important technologies to increase the coverage and capacity in 5G cellular networks. However, due to the randomly arranged small-cells, co-tier and cross-tier interference increase, deteriorating the system performance of the network. In order to manage the interference, some channel management methods use fractional frequency reuse(FFR) that divides the cell coverage into the inner region(IR) and outer region(OR) based on the distance from the macro base station(MBS). However, since it is impossible to properly measure the distance in the method with FFR, we propose a new interference aware FFR(IA-FFR) method to enhance the system performance. That is, the proposed IA-FFR method divides the MUEs and SBSs into the IR and OR groups based on the signal to interference plus noise ratio(SINR) of macro user equipments(MUEs) and received signals strength of small-cell base stations(SBSs) from the MBS, respectively, and then dynamically assigns subchannels to MUEs and small-cell user equipments. As a result, the proposed IA-FFR method outperforms other methods in terms of the system capacity and outage probability.

Application of Adaptive Neuro-Fuzzy Inference System for Interference Management in Heterogeneous Network

  • Palanisamy, Padmaloshani;Sivaraj, Nirmala
    • ETRI Journal
    • /
    • 제40권3호
    • /
    • pp.318-329
    • /
    • 2018
  • Femtocell (FC) technology envisaged as a cost-effective approach to attain better indoor coverage of mobile voice and data service. Deployment of FCs over macrocell forms a heterogeneous network. In urban areas, the key factor limits the successful deployment of FCs is inter-cell interference (ICI), which severely affects the performance of victim users. Autonomous FC transmission power setting is one straightforward way for coordinating ICI in the downlink. Application of intelligent control using soft computing techniques has not yet explored well for wireless networks. In this work, autonomous FC transmission power setting strategy using Adaptive Neuro Fuzzy Inference System is proposed. The main advantage of the proposed method is zero signaling overhead, reduced computational complexity and bare minimum delay in performing power setting of FC base station because only the periodic channel measurement reports fed back by the user equipment are needed. System level simulation results validate the effectiveness of the proposed method by providing much better throughput, even under high interference activation scenario and cell edge users can be prevented from going outage.

Performance Analysis of Co- and Cross-tier Device-to-Device Communication Underlaying Macro-small Cell Wireless Networks

  • Li, Tong;Xiao, Zhu;Georges, Hassana Maigary;Luo, Zhinian;Wang, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권4호
    • /
    • pp.1481-1500
    • /
    • 2016
  • Device-to-Device (D2D) communication underlaying macro-small cell networks, as one of the promising technologies in the era of 5G, is able to improve spectral efficiency and increase system capacity. In this paper, we model the cross- and co-tier D2D communications in two-tier macro-small cell networks. To avoid the complicated interference for cross-tier D2D, we propose a mode selection scheme with a dedicated resource sharing strategy. For co-tier D2D, we formulate a joint optimization problem of power control and resource reuse with the aim of maximizing the overall outage capacity. To solve this non-convex optimization problem, we devise a heuristic algorithm to obtain a suboptimal solution and reduce the computational complexity. System-level simulations demonstrate the effectiveness of the proposed method, which can provide enhanced system performance and guarantee the quality-of-service (QoS) of all devices in two-tier macro-small cell networks. In addition, our study reveals the high potential of introducing cross- and co-tier D2D in small cell networks: i) cross-tier D2D obtains better performance at low and medium small cell densities than co-tier D2D, and ii) co-tier D2D achieves a steady performance improvement with the increase of small cell density.

QoE Provisioning for Handovers in Mobile communication Networks

  • Lee, Jong-Chan;Lee, Moon-Ho
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권8호
    • /
    • pp.25-32
    • /
    • 2017
  • In this paper we propose a resource management method which enables to guarantee the quality of experience (QoE) for handover in the overlaid macro-femtocell networks. How to cope with the resource demand of handover calls is necessary to efficiently support the movement of mobile terminals, the QoE degradation or the load control. We attempt to satisfy the QoE requirements of users and maximize the capacity of the system at the same time. In order to achieve this goal, this scheme divides the shared resources into two part for the movement of MT and QoE degradation, and allocates those resources with the competition between four types of handovers. Simulation results show that our scheme provides better performances than the conventional one with respect to the outage probability, data transmission throughput.