• Title/Summary/Keyword: Cell Membrane

Search Result 4,164, Processing Time 0.029 seconds

Freeze-dried bovine amniotic membrane as a cell delivery scaffold in a porcine model of radiation-induced chronic wounds

  • Oh, Daemyung;Son, Daegu;Kim, Jinhee;Kwon, Sun-Young
    • Archives of Plastic Surgery
    • /
    • v.48 no.4
    • /
    • pp.448-456
    • /
    • 2021
  • Background Locoregional stem cell delivery is very important for increasing the efficiency of cell therapy. Amnisite BA (Amnisite) is a freeze-dried amniotic membrane harvested from bovine placenta. The objective of this study was to investigate the retention of cells of the stromal vascular fraction (SVF) on Amnisite and to determine the effects of cell-loaded Amnisite in a porcine radiation-induced chronic wound model. Methods Initially, experiments were conducted to find the most suitable hydration and incubation conditions for the attachment of SVF cells extracted from pig fat to Amnisite. Before seeding, SVFs were labeled with PKH67. The SVF cell-loaded Amnisite (group S), Amnisite only (group A), and polyurethane foam (group C) were applied to treat radiation-induced chronic wounds in a porcine model. Biopsy was performed at 10, 14, and 21 days post-operation for histological analysis. Results Retaining the SVF on Amnisite required 30 minutes for hydration and 1 hour for incubation. A PKH67 fluorescence study showed that Amnisite successfully delivered the SVF to the wounds. In histological analysis, group S showed increased re-epithelialization and revascularization with decreased inflammation at 10 days post-operation. Conclusions SVFs had acceptable adherence on hydrated Amnisite, with successful cell delivery to a radiation-induced chronic wound model.

Ammonium Ion Effects and Its In Situ Removal by Using Immobilized Adsorbent in Hybridoma Cell Culture (하이브리도마 세포배양에서 암모늄 이온의 영향 및 고정화 흡착제에 의한 암모늄 이온의 동시제거)

  • 정연호;이해익
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.329-339
    • /
    • 1996
  • The effects of ammonium ion on cell growth kinetics, monoclonal antibody productivity, and cell metabolism of hybridoma cells were investigated. The mouse-mouse hybridoma cell line VlIIH-8 producing mouse IgG2a was used as a model system. Ammonium ion showed an inhibitory effect on cell growth and monoclonal antibody production. New immobilized adsorbents were developed for the reduction of the inhibitory effect of ammonium ion. The ammonium ion selective zeolite, Phillipsite-Gismondine was entrapped in calcium alginate bead or in dialysis membrane and applied to the hybridoma cell culture system for the in situ removal of ammonium ion from culture media. The effects of ammonium the both serum supplemented and serum free media on the cell growth were studied by applying immobilized adsorbents of calcium alginate bead type. The results demonstrated a substantial enhancement in cell growth. Applying immobilized adsorbents of dialysis membrane type to serum supplemented media also resulted in the stimulation of cell growth, cell viability and monoclonal antibody production.

  • PDF

Antitumor Effects of Camptothecin Combined with Conventional Anticancer Drugs on the Cervical and Uterine Squamous Cell Carcinoma Cell Line SiHa

  • Ha, Sang-Won;Kim, Yun-Jeong;Kim, Won-Yong;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 2009
  • Functional defects in mitochondria are involved in the induction of cell death in cancer cells. We assessed the toxic effect of camptothecin against the human cervical and uterine tumor cell line SiHa with respect to the mitochondria-mediated cell death process, and examined the combined effect of camptothecin and anticancer drugs. Camptothecin caused apoptosis in SiHa cells by inducing mitochondrial membrane permeability changes that lead to the loss of mitochondrial membrane potential, decreased Bcl-2 levels, cytochrome c release, caspase-3 activation, formation of reactive oxygen species and depletion of GSH. Combination of camptothecin with other anticancer drugs (carboplatin, paclitaxel, doxorubicin and mitomycin c) or signaling inhibitors (farnesyltransferase inhibitor and ERK inhibitor) did not enhance the camptothecin-induced cell death and caspase-3 activation. These results suggest that camptothecin may cause cell death in SiHa cells by inducing changes in mitochondrial membrane permeability, which leads to cytochrome c release and activation of caspase-3. This effect is also associated with increased formation of reactive oxygen species and depletion of GSH. Combination with other anticancer drugs (or signaling inhibitors) does not appear to increase the anti-tumor effect of camptothecin against SiHa cells, but rather may reduce it. Combination of camptothecin with other anticancer drugs does not seem to provide a benefit in the treatment of cervical and uterine cancer compared with camptothecin monotherapy.

Performance Test of PEMFC with Hollow Fiber Membrane (중공사막 가습에 따른 PEMFC의 성능 평가)

  • Lee, Ho-Yeol;Chon, Kwang-Wu;Park, Chang-Kwon;Oh, Byeong-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.1
    • /
    • pp.82-91
    • /
    • 2005
  • Polymer membrane needs to maintain appropriate moisture. Insufficient moisture causes low conduction of hydrogen ion because of increased contact resistance between electrode and membrane by shrinking membrane, and abundant moisture decreases fuel cell performance as difficulty of diffusion reacting gas. Therefore, water controlling system is very consequential for the polymer membrane fuel cell. If hollow fiber membrane humidification is used between fuel and air lines, it is possible to supply heat to fuel and air by using thermal exchanger. It can supply appropriate humidity depending on operating temperature, and can recover heat from exhaust gas which contains water vapor and air. Because of simple structure of humidification system, this system can be easily applied in the PEMFC and cut down cost.

Preparation of $Pt/TiO_2/Nafion$ Electrolyte Membrane for Self-humidifying membrane of PEMFC (연료전지의 자가 가습 $Pt/TiO_2/Nafion$ 전해질막의 제조)

  • Byun, Jung-Yeon;Kim, Hyo-Won;Ju, Min-Cheol;Kim, Hwang-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.201-204
    • /
    • 2007
  • A novel self-humidifying composite membrane for the proton exchange membrane fuel cell (PEMFC) at low humidity condition was developed. The $Pt/TiO_2 catalyst particles were synthesized via supercritical impregnation methods. Pt precursor was dissolved in supercritical carbon dioxide and impregnated onto $TiO_2$ particles. Pt precursors were platinum(II) acetylacetonate, Dimethyl(1,5-cyclooctadiene) platinum(II) and we controlled the ratio of Pt to $TiO_2$ The impregnated Pt precursor was converted to $TiO_2$ supported Pt nanoparticle under various reducing conditions. $TiO_2$ catalyst particles were dispersed uniformly into the Nafion solution, and then $Pt/TiO_2/Nafion$composite membrane was prepared using solution-cast method. The size, dispersion and content of the platinum had been characterized with Transmission Electron Micrograph (TEM), X-ray diffract ion (XRD) and Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES). The cell performance with the self-humidifying composite membrane was compared with a recast Nafion membrane under both humidified and dry conditions at 65 $^{\circ}C$.

  • PDF

Isolation and characterization of the outer membrane vesicle (OMV) protein from Vibrio anguillarum O1 (Vibrio anguillarum O1이 생산하는 Outer Membrane Vesicle (OMV)의 분리 및 OMV 내의 단백질 특성)

  • Hong, Gyeong-Eun;Kim, Dong-Gyun;Min, Mun-Kyeong;Kong, In-Soo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.123-125
    • /
    • 2007
  • Vibrio anguillarum is a gram-negative bacterium that causes vibriosis in approximately 80 different fish species. V. anguillarum produces several exotoxins are correlated with the pathogenesis of vibriosis. This study is focused on the composition of the outer membrane vesicle. Most of gram-negative bacteria produce outer membrane vesicle (OMV) during cell growth. OMV was formed from the outer membrane surface of cell and than released to extracellular environment. OMV consists of outer membrane lipids, outer membrane protein (OMP), LPS, and soluble periplasmic components. Also, they contain toxins, adhesions, and immunomodulatory. Many gram-negative bacteria were studied out forming OMV. In Vibrio sp., formation of OMV by electron microscopy has been reported from V. cholerae and V. parahaemolyticus. In present study, we isolated OMV from V. anguillarum and OMV protein was separated by SDS-PAGE. Magor band was sliced and analyzed by MALDI-TOF. The major protein band of 38kDa was identified as OmpU by MALDI-TOF MS analysis.

  • PDF

Use of Inner Ionomer Solution in Preparing Membrane-Electrode Assembly (MEA) for Fuel Cells and Its Characterization

  • Seo, Seok-Jun;Woo, Jung-Je;Yun, Sung-Hyun;Park, Jin-Soo;Moon, Seung-Hyeon
    • Korean Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.46-52
    • /
    • 2008
  • Optimization of ionomer solution was conducted in order to improve the performance of MEAs in PEMPC. The interface between membrane and electrodes in MEAs is crucial region determining fuel cell performance as well as ORR reaction at cathode. Through the modification of Nafion ionomer content at the interface between membrane and electrodes, an optimal content was obtained with Nafion 115 membranes. Two times higher current density was obtained with the outer Nafion sprayed MEA compared with the non-sprayed one. In addition, the symmetrical impedance spectroscopy mode (SM) exhibited that the resistances of membrane area, proton hydration, and charge transfer decreased as the outer Nafion is sprayed. From the polarization curves and SM, the highest current density and the lowest resistance was obtained at the outer ionomer content of $0.15\;mg\;cm^{-2}$.

Automated Cell Counting Method for HeLa Cells Image based on Cell Membrane Extraction and Back-tracking Algorithm (세포막 추출과 역추적 알고리즘 기반의 HeLa 세포 이미지 자동 셀 카운팅 기법)

  • Kyoung, Minyoung;Park, Jeong-Hoh;Kim, Myoung gu;Shin, Sang-Mo;Yi, Hyunbean
    • Journal of KIISE
    • /
    • v.42 no.10
    • /
    • pp.1239-1246
    • /
    • 2015
  • Cell counting is extensively used to analyze cell growth in biomedical research, and as a result automated cell counting methods have been developed to provide a more convenient and means to analyze cell growth. However, there are still many challenges to improving the accuracy of the cell counting for cells that proliferate abnormally, divide rapidly, and cluster easily, such as cancer cells. In this paper, we present an automated cell counting method for HeLa cells, which are used as reference for cancer research. We recognize and classify the morphological conditions of the cells by using a cell segmentation algorithm based on cell membrane extraction, and we then apply a cell back-tracking algorithm to improve the cell counting accuracy in cell clusters that have indistinct cell boundary lines. The experimental results indicate that our proposed segmentation method can identify each of the cells more accurately when compared to existing methods and, consequently, can improve the cell counting accuracy.

Design Factors of Membrane Electrode Assembly for Direct Methanol Fuel Cells. (직접 메탄올 연료전지용 막-전극 접합체의 설계 인자에 관한 연구)

  • Cho, Jae-Hyung;Hwang, Sang-Youp; Kim, Soo-Kil;Ahn, Dong-June;Lim, Tae-Hoon;Ha, Heung-Yong
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.293-299
    • /
    • 2007
  • Direct coating of catalyst layer on the $Nafion^{(R)}$ membrane has been optimized in the process of fabrication of membrane electrode assembly (MEA) to enhance the performance of direct methanol fuel cell (DMFC). In this method, the contact resistance at the interface of the catalyst layer and the membrane was found to be low. The effect of catalyst loading, thickness of membrane and the gas diffusion layer (GDL) with or without the presence of micro-porous layer (MPL) on the performance of the MEA was also investigated. The MEA fabricated by the above-mentioned method exhibited a performance of $147\;mW/cm^2$ and $100\;mW/cm^2$ at $80^{\circ}C$ and $60^{\circ}C$, respectively, with the catalysts loading of $4\;mg/cm^2$.

  • PDF

Fabrication of Cross-linked Nano-Fibrous Chitosan Membranes and Their Biocompatibility Evaluation

  • Nguyen, Thi-Hiep;Lee, Seong-Jin;Min, Young-Ki;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.125-132
    • /
    • 2011
  • Fibrous chitosan membranes were fabricated as a substrate for skin applications using an electro-spinning process with different solvents and varying concentrations. Scanning electron microscopy (SEM) images confirmed that the formation of the chitosan fibrous membrane in trifluoroacetic acid was better than that in acetic acid. Fourier transform infrared spectroscopy showed that the chitosan fibers were cross-linked with glutaraldehyde, and that the cytotoxicity of the aldehyde groups was reduced by glycine and washing by NaOH and DI water. Chitosan cross-linked fibrous membranes were insoluble in water and could be washed thoroughly to wash away glycine and excess NaOH and prevent the infiltration of other water soluble bio-toxic agents using DI water. MTT assay method was employed to test the cytotoxicity of chitosan membranes during fabricating, treating and washing processes. After the dehydration of cell cultured chitosan membranes, cell attachment behavior on the material was evaluated using SEM method. Effect of the treatment processes on the biocompatibility of the chitosan membranes was shown by comparing of filopodium and lamellipodium of fibroblast cells on grown washed and unwashed chitosan fibrous membrane. The MTT assay and SEM morphology confirmed that the washed chitosan fibrous membrane increased cell attachment and cell growth, and decreased toxicity compared to results for the unwashed chitosan fibrous membrane.