• Title/Summary/Keyword: Cell Growth

Search Result 8,888, Processing Time 0.042 seconds

Evaluation of Cytotoxicity Effects of Chalcone Epoxide Analogues as a Selective COX-II Inhibitor in the Human Liver Carcinoma Cell Line

  • Makhdoumi, Pouran;Zarghi, Afshin;Daraei, Bahram;Karimi, Gholamreza
    • Journal of Pharmacopuncture
    • /
    • v.20 no.3
    • /
    • pp.207-212
    • /
    • 2017
  • Objectives: Study of the mechanisms involved in cancer progression suggests that cyclooxygenase enzymes play an important role in the induction of inflammation, tumor formation, and metastasis of cancer cells. Thus, cyclooxygenase enzymes could be considered for cancer chemotherapy. Among these enzymes, cyclooxygenase 2 (COX-2) is associated with liver carcinogenesis. Various COX-2 inhibitors cause growth inhibition of human hepatocellular carcinoma cells, but many of them act in the COX-2 independent mechanism. Thus, the introduction of selective COX-2 inhibitors is necessary to achieve a clear result. The present study was aimed to determine the growth-inhibitory effects of new analogues of chalcone epoxide as selective COX-2 inhibitors on the human hepatocellular carcinoma (HepG2) cell line. Methods: Estimation of both cell growth and the amount of prostaglandin E2 (PGE2) production were used to study the effect of selective COX-2 inhibitors on the hepatocellular carcinoma cell. Cell growth determination has done by MTT assay in 24 h, 48 h and 72 h, and PGE2 production has estimated by using ELYSA kit in 48 h and 72 h. Results: The results showed growth inhibition of the HepG2 cell line in a concentration and time-dependent manner, as well as a reduction in the formation of PGE2 as a product of COX-2 activity. Among the compounds those analogues with methoxy and hydrogen group showed more inhibitory effect than others. Conclusion: The current in-vitro study indicates that the observed significant growth-inhibitory effect of chalcone-epoxide analogues on the HepG2 cell line may involve COX-dependent mechanisms and the PGE2 pathway parallel to the effect of celecoxib. It can be said that these analogues might be efficient compounds in chemotherapy of COX-2 dependent carcinoma specially preventing and treatment of hepatocellular carcinomas.

Effect of Electromagnetic Fields on Growth of Human Cell Lines

  • Oh, Se-Jong;Lee, Mi-Kyung;Lee, Seo-Ho;Lee, Jin-Ha;Kim, Dai-Jong;Park, Young-Shik;Lee, Hyeon-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.749-755
    • /
    • 2001
  • High Electromagnetic Field (EMF) with an intensity of 1 mT (Tesla) inhibited the growth of both human normal lung and immune T cell down to $20-30\%$, compared to that of an unexposed case. The human T-cells, Jurkat, were more severely affected by EMF than the human lung cells, which showed a relatively slow cell growth and substantial releas of $Ca^+2$ (3.5 times higher than the human T-cells). However, the growth of hepatoma carcinoma, Hep3B, was enhanced by twice that of an unexposed case. The EMF intensity and exposure time did not affect the growth of the cancer cells very much, while it significantly affected the growth of normal cells. Accordingly, it is possible that EMFs may play a role in the initiation of cancer. The EMFs disturbed the signal transduction and membrane systems, such that a five times higher amount of PKC-${\alpha}$ was released from the cell membrane than in the control. Extended exposure to EMFs, for more than 48 hours, also led to 1 $90\%$ necrotic death pattern from apoptotic cell death. Finally, EMF at an intensity of 1mT with a 24-T exposure promoted the differentiation of HL-60 cells to monocytes/macrophages, possibly causing potential acute leukemia.

  • PDF

Characteristics of Recombinant CHO Cell Growth and Erythropoietin Production in Serum-Containing Media and Serum-Free Media (혈청배지와 무혈청배지에서의 재조합 CHO 세포 성장과 Erythropoietin 생산)

  • 변태호;전복환
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.288-294
    • /
    • 1996
  • We have investigated the characteristics of recombinant CHO cell growth and erythropoletin(EPO) production at different concentrations of serum and inoculation density. Cell growth and EPO production were increased with the increase of serum concentration and inoculation density. Enhancement of CHO cell growth and EPO production by medium exchange using serum-free medium at the growth phase of cells was studied. It was found that the exchange of culture medium with serum-free medium was favorable for growth of cells and production of EPO. The maximum number of cell and concentration of EPO obtained by exchanging culture medium were $6.2{\times}105cells/$\textrm{cm}^2$ and 7,470units/m1, respectively, compared to $2.1{\times}105cells/\textrm{cm}^2$ and 2,380units/m1 in serum-containing medium without medium exchange. It was observed that CHO cell growth was correlated with EPO production in serum-free media.

  • PDF

Inhibition of Oral Epithelial Cell Growth in vitro by Epigallocatechin-3-gallate; Its Modulation by Serum and Antioxidant Enzymes

  • Hong, Jung-Il;Kim, Mi-Ri;Lee, Na-Hyun;Lee, Bo-Hyun
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.971-977
    • /
    • 2009
  • The most abundant tea catechin, epigallocatechin-3-gallate (EGCG), has been reported to inhibit cell proliferation and induce apoptosis in many types of cancer cells. In the present study, effects of EGCG on the growth of oral epithelial cells including CAL-27 oral squamous carcinoma cells and dysplastic oral keratinocytes (DOK) were investigated. EGCG inhibited growth of CAL-27 cells and DOK with $IC_{50}$ of 14.4-21.0 and 5.8-14.2 ${\mu}M$ after 24 and 48 hr incubation, respectively. EGCG was significantly less effective in inhibiting DOK growth. The effects of EGCG, however, were dramatically less pronounced in the presence of superoxide dismutase (SOD) and catalase. Inhibitory effects of EGCG on CAL-27 cell growth were also much less pronounced in the presence of fetal bovine serum (FBS). EGCG induced caspase-3 activation in both CAL-27 and DOK cells in a serum free condition without SOD/catalase; in the presence of 10% FBS and SOD/catalase, EGCG, even at 100 ${\mu}M$, did not affect cell growth. The present results indicate that EGCG inhibited oral cell growth with higher potency to more malignant CAL-27 cells than DOK, and the effects were markedly altered by SOD/catalase and serum content in media.

EXPRESSION OF PLACENTA GROWTH FACTOR IN THE ORAL SQUAMOUS CELL CARCINOMA (구강 편평세포암종에서 태반성장인자의 발현)

  • Lee, Sang-Gu;Kim, Chul-Hwan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.1
    • /
    • pp.27-34
    • /
    • 2009
  • Angiogenesis is essential for solid tumor growth and progression. Among the pro-angiogenetic factors, vascular endothelial growth factor(VEGF), also known as vascular permeability factor, is the most important as a mitogen for vascular endothelium. The VEGF family of molecules currently consists of six growth factors, VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, and placenta growth factor(PlGF). Over-expression of PlGF is associated with angiogenesis under pathological conditions such as ischemia, inflammation, and cancer. Hence, the goal of this study is to identify the correlation of clinicopathlogical factors and the up-regulation of PlGF expression in oral squamous cell carcinoma. We studied the immunohistochemical staining of PlGF, PlGF gene expression and a real time quantitative RT-PCR in 20 specimens of 20 patients with oral squamous cell carcinoma. The results were as follows. 1. In the immunohistochemical study of poorly differentiated and invasive oral squamous cell carcinoma, the high level staining of PlGF was observed. And the correlation between immunohistopathological PlGF expression and histological differentiation of specimens was significant (Pearson correlation analysis, significance [r] >0.6, P < .05). 2. In the PlGF gene RT-PCR analysis, PlGF expression was more in tumor tissue than in adjacent normal tissue. Paired-samples analysis determined the difference of PlGF mRNA expression level between the cancer tissue and the normal tissue (Student's t - test, P < .05) These findings suggest that up-regulation of the PlGF gene may play a role in progression and local metastasis in invasive oral squamous cell carcinoma.

Optimization of Betacyanin Production by Red Beet (Beta vulgaris L.) Hairy Root Cultures. (Red Beet의 모상근 배양을 이용한 천연색소인 Betacyanin 생산의 최적화)

  • Kim, Sun-Hee;Kim, Sung-Hoon;Lee, Jo-No;An, Sang-Wook;Kim, Kwang-Soo;Hwnag, Baik;Lee, Hyeong-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.5
    • /
    • pp.435-441
    • /
    • 1998
  • Optimal conditions for the production of natural color, betacyanin were investigated by varying light intensity, C/N ratio, concentrations of phosphate and kinds of elicitors. Batch cultivation was employed to characterize cell growth and betacyanin production of 32 days. The maximum specific growth rate, ${\mu}$$\sub$max/, was 0.3 (1/day) for batch cultivation. The maximum specific production rate, q$\^$max/$\sub$p/, was enhanced 0.11 (mg/g-cell/day) at 3 klux. A light intensity of 3 klux was shown to the best for both cell growth and betacyanin production. The maximum specific production rate was 0.125 (mg/g-cell/day) at 0.242 (1/day), the maximum specific growth rate. The dependence of specific growth rate on the light lintensity is fit to the photoinhibition model. The correlation between ${\mu}$ and q$\sub$p/ showed that the product formation parameters, ${\alpha}$ and ${\beta}$$\sub$p/ were 0.3756 (mg/cell) and 0.001 (mg/g-cell/day), respectively. The betacyanin production was partially cell growth related process, which is different from the production of a typical product in plant cell cultures. In C/N ratio experiment, high carbon concentration, 42.1 (w/w) improved cell growth rate while lower concentration, 31.6 (w/w) increased the betacyanin production rate. The ${\mu}$$\sub$max/ and q$\^$max/$\sub$p/ were 0.26 (1/day) and 0.075 (mg/g-cell/day), respectively. Beta vulgaris L. cells under 1.25 mM phosphate concentration produced 10.15 mg/L betacyanin with 13.46 (g-dry wt./L) of maximum cell density. The production of betacyanin was elongated by adding 0.1 ${\mu}$M of kinetin. This also increased the cell growth. Optimum culture conditions of light intensity, C/N, phosphate concentration were obtained as 5.5 klux, 27 (w/w), 1.25 mM, respectively by the response surface methodology. The maximum cell density, X$\sub$max/, and maximum production, P$\sub$max/, in optimized conditions were 16 (g-dry wt./L), 12.5 (mg/L) which were higher than 8 (g-dry wt./L), 4.48 (mg/L) in normal conditions. The ${\mu}$$\sub$max/ and q$\^$max/$\sub$p/ were 0.376 (1/day) and 0.134 (mg/g-cell/day) at the optimal condition. The overall results may be useful in scaling up hairy root cell culture system for commercial production of betacyanin.

  • PDF

Multilayered phospholipid polymer hydrogels for releasing cell growth factors

  • Choi, Jiyeon;Konno, Tomohiro;Ishihara, Kazuhiko
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • Polymer multilayered hydrogels were prepared on a titanium alloy (Ti) substrate using a layer-by-layer (LBL) process to load a cell growth factor. Two water-soluble polymers were used to fabricate the multilayered hydrogels, a phospholipid polymer with both N, N-dimethylaminoethyl methacrylate (DMAEMA) units and 4-vinylphenylboronic acid (VPBA) units [poly(MPC-co-DMAEMA-co-VPBA) (PMDV)], and the polysaccharide alginate (ALG). PMDV interacted with ALG through a selective reaction between the VPBA units in PMDV and the hydroxyl groups in ALG and through electrostatic interactions between the DMAEMA units in PMDA and the anionic carboxyl groups in ALG. First, the Ti substrate was covered with photoreactive poly vinyl alcohol, and then the Ti alloy was alternately immersed in the respective polymer solutions to form the PMDV/ALG multilayered hydrogels. In this multilayered hydrogel, vascular endothelial growth factor (VEGF) was introduced in different layers during the LbL process under mild conditions. Release of VEGF from the multilayered hydrogels was dependent on the location; however, release continued for 2 weeks. Endothelial cells adhered to the hydrogel and proliferated, and these corresponded to the VEGF release profile from the hydrogel. We concluded that multilayered hydrogels composed of PMDV and ALG could be loaded with cell growth factors that have high activity and can control cell functions. Therefore, this system provides a cell function controllable substrate based on the controlled release of biologically active proteins.

Synergistic Inhibition of Membrane ATPase and Cell Growth of Helicobacter pylori by ATPase Inhibitors

  • Ki, Mi-Ran;Yun, Soon-Kyu;Lim, Wang-Jin;Hong, Bum-Shik;Hwang, Se-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.414-421
    • /
    • 1999
  • Helicobacter pylori were found to be resistant to azide but sensitive to vanadate, suggesting that defect in the P-type ATPase activity rather than F-type ATPase would be lethal to cell survival or growth. To elucidate the relationship between this enzyme inhibition and H. pylori death, we determined the effect of omeprazole (OMP) plus vanadate on enzyme activity and cell growth. The minimum inhibitory concentration (MIC; ca. 0.8$\mu$mol/disk) of vanadate for H. pylori growth was lowered over l0-fold with the aid of OMP, whereby its inhibitory potential toward the P-type ATPase activity was diametrically increased. Alternatively, we found that this enzyme activity was essential for active transport in H. pylori. From these observations, we strongly suggest that the immediate cause of the growth inhibition of H. pylori cells with OMP and/or vanadate might be defective in the cell's active transport due to the lack of P-type ATPase activity. From the spectral data with circular dichroism (CD) spectroscopy, we found that activated OMP (OAS) at concentration below MIC did not disrupt helical structures of membrane proteins. Separately, we determined the cytopathic effect of OAS by SDS-PAGE, indicating the change in the production of cytoplasmic protein but not cell membrane.

  • PDF

Effect of Pluronic F-68 and Oxygen Vectors on Cell Growth of Angelica gigas Nakai in Fed-batch Culture

  • Jeon, Su-Hwan;Lee, Sang-Yun;Jo, Ji-Suk;Min, Byeong-Hyeok;Kim, Dong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.159-162
    • /
    • 2000
  • It has been commonly known that cell growth is inhibited by the lack of dissolved oxygen and mass transfer inhibition of nutrients at stationary phase in fed-batch culture. In this study, Pluronic F-68 and oxygen vectors were added in Angelica gigas Nakai suspension culture in order to enhance cell growth in fed-batch culture. It was observed that the addition of 6%(w/v) Pluronic F-68 promoted cell growth up to 6.1% compared to control and that the use of 4%(v/v) n-hexadecane markedly enhanced cell growth up to 11.4%.

  • PDF

Effects of nerve cells and adhesion molecules on nerve conduit for peripheral nerve regeneration

  • Chung, Joo-Ryun;Choi, Jong-Won;Fiorellini, Joseph P.;Hwang, Kyung-Gyun;Park, Chang-Joo
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.17 no.3
    • /
    • pp.191-198
    • /
    • 2017
  • Background: For peripheral nerve regeneration, recent attentions have been paid to the nerve conduits made by tissue-engineering technique. Three major elements of tissue-engineering are cells, molecules, and scaffolds. Method: In this study, the attachments of nerve cells, including Schwann cells, on the nerve conduit and the effects of both growth factor and adhesion molecule on these attachments were investigated. Results: The attachment of rapidly-proliferating cells, C6 cells and HS683 cells, on nerve conduit was better than that of slowly-proliferating cells, PC12 cells and Schwann cells, however, the treatment of nerve growth factor improved the attachment of slowly-proliferating cells. In addition, the attachment of Schwann cells on nerve conduit coated with fibronectin was as good as that of Schwann cells treated with glial cell line-derived neurotrophic factor (GDNF). Conclusion: Growth factor changes nerve cell morphology and affects cell cycle time. And nerve growth factor or fibronectin treatment is indispensable for Schwann cell to be used for implantation in artificial nerve conduits.