• 제목/요약/키워드: Cell Densification

검색결과 24건 처리시간 0.032초

동종네트워크 상에서 셀 소형화 간섭 완화 기법 및 성능 분석 (Effect of Interference Mitigation Technique and Performance Analysis for Small Cell in Homogeneous Networks)

  • 장예옥;조은형;홍인기
    • 한국통신학회논문지
    • /
    • 제39C권10호
    • /
    • pp.937-945
    • /
    • 2014
  • LTE/LTE-adv. 서비스 도입에 따라 높은 데이터 전송률을 요하는 다양한 서비스들이 제공되면서 모바일 트래픽은 더욱 가파르게 증가하고 있다. 이러한 트래픽 수요의 폭발적인 증가에 대응하기 위한 새로운 주요 기술로 소형셀 기술이 각광받고 있다. 소형셀 기술은 셀 반경을 현격히 줄여서 소형 기지국의 수를 증가시킴으로써 수용 가능한 트래픽 양을 늘릴 수 있다. 본 논문은 동종네트워크의 outdoor 환경에서 소형셀 도입에 따른 셀 치밀화(cell densification) 효과에 대해 셀 분할 효과와 단위 면적당 UE 수를 별도로 고려하여 SINR(Signal to Interference-Noise Ratio)과 UE(User Equipment)당 평균 수율 변화를 분석하였다. 또한 셀이 소형화되면 셀 간 간격이 좁아지면서 인접셀 간 간섭이 심화되어 SINR이 열화되기 때문에 본 논문은 간섭 제어가 적절하게 이루어졌을 때의 SINR 이득을 보임으로써 소형셀 환경에서의 간섭 제거 기법의 효과를 검증하였다.

La0.8Ca0.2CrO3 Interconnect Materials for Solid Oxide Fuel Cells: Combustion Synthesis and Reduced-Temperature Sintering

  • Park, Beom-Kyeong;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권1호
    • /
    • pp.39-44
    • /
    • 2011
  • Sub-micrometer $La_{0.8}Ca_{0.2}CrO_3$ powders for ceramic interconnects of solid oxide fuel cells were synthesized by the aqueous combustion process. The materials were prepared from the precursor solutions with different glycine (fuel)-to-nitrate (oxidant) ratios (${\phi}$). Single-phase $La_{0.8}Ca_{0.2}CrO_3$ powders with a perovskite structure were obtained after combustion when ${\phi}$ was equal to or larger than 0.480. Especially, the stoichiometric precursor with ${\phi}$ = 0.555 yielded the spherical $La_{0.8}Ca_{0.2}CrO_3$ particles with 150-250 nm diameters after calcination at $1000^{\circ}C$. When compared with the powders synthesized by the solid-state reaction, the combustion-derived, fine powders exhibited improved sinterability, leading to near-full densification at $1400^{\circ}C$ in oxidizing atmospheres. Moreover, a small quantity of glass additives was used to reduce the sintering temperature, and considerable densification was indeed achieved at temperatures as low as $1100^{\circ}C$.

전사법으로 제조한 SOFC용 YSZ 전해질 전사지의 치밀화 및 전기화학적 특성 (Densification and Electrochemical Properties of YSZ Electrolyte Decalcomania Paper for SOFCs by Decalcomania)

  • 조해란;최병현;안용태;백성현;노광철;박선민
    • 대한금속재료학회지
    • /
    • 제50권9호
    • /
    • pp.685-690
    • /
    • 2012
  • Decalcomania is a new method for SOFCs (solid oxide fuel cells) unit cell fabrication. A tight and dense $5{\mu}m$ Yttria-stabilized zirconia (8YSZ) electrolyte layer on anode substrate was fabricated by the decalcomania method. After 8YSZ as the electrolyte starting material was calcined at $1200^{\circ}C$, the particle size was controlled by the attrition mill. The median particle size (D50) of each 8YSZ was $39.6{\mu}m$, $9.30{\mu}m$, $6.35{\mu}m$, and $3.16{\mu}m$, respectively. The anode substrate was coated with decalcomania papers which were made by using 8YSZ with different median particle sizes. In order to investigate the effect of median particle sizes and sintering conditions on the electrolyte density, each sample was sintered for 2, 5 and 10 h, respectively. 8YSZ with a median particle size of $3.16{\mu}m$ which was sintered at $1400^{\circ}C$ for 10 had the highest density. With this 8YSZ, a SOFCs unit cell was manufactured with a $5{\mu}m$ layer by the decalcomania method. Then the unit cell was run at $800^{\circ}C$. The Open Circuit Voltage (OCV) and Maximum power density (MPD) was 1.12 V and $650mW/cm^2$, respectively.

Joining of Lanthanum Chromite and Yttria Stabilized Zirconia in Sealing of Planar Solid Oxide Fuel Cell

  • Lee, You-Kee;Park, Jong-Wan
    • 한국재료학회지
    • /
    • 제4권7호
    • /
    • pp.741-749
    • /
    • 1994
  • The planar solid oxide fuel cell(SOFC) contains several ceramic materials depending on its structure and has rdfractory metal parts for manifolds, shrouds and current leads. Among ceramic materials for planar SOFC, joining of lanthanum chromite separator and yttria stabilized zirconia(YSZ) electoyte in planar SOFC stack to give strong gas tight seals is necessary for satisfactory operation and high performance. Nevertheless, for planar SOFC/sub s/, how to seal the cell stack and gas manifold remains as one of the unsolved problems. Therefore, in this study. we investigated the joining of sintered lanthanum chromite and YSZ pellets using unsintered lanthanum chromite green films as sealent. Scanning electron microscopy(SEM) and energy dispersive X-ray analysis(EDX) revealed that Ca in the sealing material diffused and dissolved into YSZ and sintered lanthanum chromite, and unsintered lanthanum chromite green films reacted with YSZ to from a new phase at the interface. Also, the densification of unsintered lanthanum chromite green films was inpeded by the Ca migration.

  • PDF

Flexural Behaviors of 4D Carbon/carbon Composites with the Preform Architectures

  • Lee, Ki-Woong;Park, Jong-Min;Joo, Hyeok-Jong
    • Carbon letters
    • /
    • 제9권1호
    • /
    • pp.28-34
    • /
    • 2008
  • Multidirectional reinforcement is aimed primarily at overcoming interlaminar weakness, hence a major interest lies in the mechanical properties of multidirectional carbon/carbon composites. Mechanical properties depend on the type of carbon fiber, the size of the fiber bundle, the spacing of the bundles, the angles of the bundles relative to the axes of the block, and matrix formation. In the present studies, PAN based carbon fiber preforms manufactured different size of unit cell have been prepared. Densification of these used high pressure infiltration and carbonization technique with coal tar pitch as matrix precursor was carried out. Scanning electron microscopy has been used to study the fracture behavior of composites. The size of unit cell of the preforms has considerably affected on the flexural properties as well as microstructure of the carbon/carbon composites.

탄소열환원 공정을 사용한 다공질 탄화규소 세라믹스의 저온 제조공정 (Low Temperature Processing of Porous Silicon Carbide Ceramics by Carbothermal Reduction)

  • 엄정혜;장두희;김영욱;송인혁;김해두
    • 한국세라믹학회지
    • /
    • 제43권9호
    • /
    • pp.552-557
    • /
    • 2006
  • A low temperature processing route for fabricating porous SiC ceramics by carbothermal reduction has been demonstrated. Effects of expandable microsphere content, sintering temperature, filler content, and carbon source on microstructure, porosity, compressive strength, cell size, and cell density were investigated in the processing of porous silicon carbide ceramics using expandable microspheres as a pore former. A higher microsphere content led to a higher porosity and a higher cell density. A higher sintering temperature resulted in a decreased porosity because of an enhanced densification. The addition of inert filler increased the porosity, but decreased the cell density. The compressive strength of the porous ceramics decreased with increasing the porosity. Typical compressive strength of porous SiC ceramics with ${\sim}70%$ porosity was ${\sim}13 MPa$.

Enhancement of Dimensional Stability of Compressed Open Cell Rigid Polyurethane Foams by Thermo-Mechanical Treatment

  • Ahn, WonSool
    • Elastomers and Composites
    • /
    • 제50권1호
    • /
    • pp.30-34
    • /
    • 2015
  • Thermo-mechanical treatment process of a compressed open-cell rigid polyurethane foam (OC-RPUF), which was fabricated for the vacuum insulation panel (VIP), was studied to obtain an optimum condition for the dimensional stability by the relaxation of compressive stress. Thermo-mechanical deformation of the sample OC-RPUF was shown to occur from about $120^{\circ}C$. Yield stress of 0.36 MPa was shown at about 10% yield strain. And, densification of the foam started to occur from 75% compressive strain and could be continued up to max. 90%. Compression set of the sample restored after initial compression to 90% at room temperature was ca. 82%. Though the expansion occurred to about twice of the originally compressed thickness in case of temperature rise to $130^{\circ}C$, it could be overcome and the dimensional stability could be maintained if the constant load of 0.3 MPa was applied. As the result, a thermo-mechanical treatment process, i.e, annealing process at temperature of $130{\sim}140^{\circ}C$ for about 20 min as is the maximum compressed state at room temperature, should be required for dimensional stability as an optimum condition for the use of VIP core material.

Ceria의 소결과 전기전도도에 미치는 첨가제의 영향 (Effect of Additives on the Densification and Electrical Properties of Ce0.8Gd0.2O2-δ Ceramics)

  • 유경빈;오은주;최경만
    • 한국세라믹학회지
    • /
    • 제42권12호
    • /
    • pp.816-820
    • /
    • 2005
  • The doped-ceria is a strong candidate material for an intermediate temperature SOFC. However, the mechanical strength and the magnitude of electrical conductivity need to be increased at low sintering temperature. In this study, to improve both properties, $1at\% $ of Mg, Ca, Cr, Fe, Co, Ni, Cu, Ga, and Zr were added to the GDC20 ($20at\%$ Gd-doped Ceria) and sintered at $1350^{\circ}C$ that is $250^{\circ}C$ lower than $1600^{\circ}C$. With addition, the relative density of the sintered sample increased. Fe, Co, Ni, Cu, Ga doped-GDC20 showed high relative density over $92\%$. Among them, Ga doped-GDC20 showed the most improved sinterability. The conductivity of doped­GDC20 increased by $\~10$ times at $300\~700^{\circ}C$.

Rhamnose-rich and fucose-rich oligo- and polysaccharides (RROP-s and FROPs), agonists and antagonists of cell-membrane receptors as new active principles against skin aging.

  • Robert, L.;Robert, A.M.;Gesztes, J.L.;Luppi, E.
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book I
    • /
    • pp.352-373
    • /
    • 2003
  • Rhamnose-rich (RROP-s) and fucose-rich (FROP-s) oligo-and polysaccharides were prepared and extensively characterised by physical and chemical procedures [1,2] and compared to L-fucose. Their biological properties were then studied on human skin fibroblast cell cultures, human skin explant cultures and on hairless rat skin, using a variety of cell-biological, biochemical and computerised morphometrical procedures. Among the most important properties we could establish, the following are of particular interest for the tretment and prevention of age-dependent modifications of human skin (loss of skin-tissue, cells and matrix, wrinkle formation and others) : stimulation of cell proliferation (by $^3$[H]-thymidine incorporation and the MTT test), scavenging of reactive oxygen species (ROS) using several different procedures, and protease (MMP-2 and MMP-9) down-regulation. A topical preparation, using RROP-s and FROP-s, and/or L-fucose, was shown to increase cell proliferation, dermal matrix synthesis, efficient scavenging of ROS-s and to increase also the thickness of dermal tissue when applied for 4 weeks on hairless rat skin, accompanied by the densification of collagen bundles as well as by an increase of elastin synthesis. Using fluorescent labeled FROPs, it could be shown that these oligosaccharides react with cell-membrane receptors and especially with the elastin-laminin-receptor and the fucose-mannose receptor, but they penetrate also in the cell nucleus, suggesting the possibility of a direct action on the regulation of gene expression. When applied to the human skin of a team of voluntary women encompassing all age-groups, the efficiency of FROP-containing preparation could be confirmed using indentometry and computerised evaluation of skin micro-relief, as well as evaluation of periorbital wrinkles. It appears therefore that these preparations correspond to all the requirements of active anti-aging principles.

  • PDF

LTE Mobility Enhancements for Evolution into 5G

  • Park, Hyun-Seo;Choi, Yong-Seouk;Kim, Byung-Chul;Lee, Jae-Yong
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1065-1076
    • /
    • 2015
  • Network densification is regarded as the dominant driver for wireless evolution into the era of 5G. However, in this context, interference-limited dense small cell deployments are facing technical challenges in mobility management. The recently announced results from an LTE field test conducted in a dense urban area show a handover failure (HOF) rate of over 21%. A major cause of HOFs is the transmission failure of handover command (HO CMD) messages. In this paper, we propose two enhancements to HO performance in LTE networks - radio link failure-proactive HO, which helps with the reliable transmission of HO CMD messages while the user equipment is under a poor radio link condition, and Early Handover Preparation with Ping-Pong Avoidance (EHOPPPA) HO, which assures reliable transmission of HO CMD under a good radio link condition. We analyze the HO performance of EHOPPPA HO theoretically, and perform simulations to compare the performance of the proposed schemes with that of standard LTE HO. We show that they can decrease the HOF rate to nearly zero through an analysis, and based on the simulation results, by over 70%, without increasing the ping-pong probability.