• Title/Summary/Keyword: Cell Capacitance

Search Result 220, Processing Time 0.028 seconds

Design of a Micro-strip Patch Array Antenna using CRLH Transmission Line Power Divider Supporting Infinite Wavelength (무한파장 전파특성을 갖는 CRLH 전송선로 전력 분배기를 이용한 마이크로스트립 패치 배열 안테나의 설계)

  • Kim, Jung-hyung;Lee, Hong-min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.2
    • /
    • pp.39-45
    • /
    • 2010
  • In this paper, an equally spaced $3{\times}2$ microstrip patch array antenna based on the fundamental infinite wavelength supported by the composite right/left-handed (CRLH) transmission line (TL) is proposed. The proposed CRLH TL unit cell consists of an inter-digit capacitor to realize left-handed (LH) series capacitance and non-symmetric shunt meander line with a shorted via to realize LH shunt inductance. At the infinite wavelength frequency of 2.09 GHz a 6-port series power divider consisting of a 19 unit cells shows a maximum magnitude difference of 0.73 dB and a $0.52^{\circ}$ maximum phase difference between output ports. The measured resonant frequency and maximum gain of the fabricated array antenna is 2.09 GHz and 10.98 dBi, respectively.

  • PDF

A study on the capacitance-voltage characteristics of the CdZnS/CdTe heterojunction (CdZnS/CdTe 이종접합의 커패시턴스-전압 특성에 관한 연구)

  • Lee, Jae-Hyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.6
    • /
    • pp.1349-1354
    • /
    • 2011
  • In this work, we fabricated the CdZnS/CdTe heterojunction and investigated the C-V characteristics to determine the depletion width and the charge density distribution. A parallel experiment on CdS/CdTe heterojunction was also carried out for comparison. The depletion region width, for CdZnS/CdTe heterojunction, was nearly constant, regardless of bias voltage. However, the depletion region was wider than that of CdS/CdTe heterojunction due to high resistivity of CdZnS film. The interface charge density of CdZnS/CdTe heterojunction was increased linearly with the bias voltage and showed lower values than those for CdS/CdTe junction. The open circuit voltage of CdZnS/CdTe heterojunction solar cells increased with zinc mole ratio due to reducing of the electron affinity difference between CdZnS and CdTe films. However, the increase of series resistance due to the high resistivity of Cd1-xZnxS films results in reducing conversion efficiency.

Performance Improvement of Isolated High Voltage Full Bridge Converter Using Voltage Doubler

  • Lee, Hee-Jun;Shin, Soo-Cheol;Hong, Seok-Jin;Hyun, Seung-Wook;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2224-2236
    • /
    • 2014
  • The performance of an isolated high voltage full bridge converter is improved using a voltage doubler. In a conventional high voltage full bridge converter, the diode of the transformer secondary voltage undergoes a voltage spike due to the leakage inductance of the transformer and the resonance occurring with the parasitic capacitance of the diode. In addition, in the phase shift control, conduction loss largely increases from the freewheeling mode because of the circulating current. The efficiency of the converter is thus reduced. However, in the proposed converter, the high voltage dual converter consists of a voltage doubler because the circulating current of the converter is reduced to increase efficiency. On the other hand, in the proposed converter, an input current is distributed when using parallel input / serial output and the output voltage can be doubled. However, the voltages in the 2 serial DC links might be unbalanced due to line impedance, passive and active components impedance, and sensor error. Considering these problems, DC injection is performed due to the complementary operations of half bridge inverters as well as the disadvantage of the unbalance in the DC link. Therefore, the serial output of the converter needs to control the balance of the algorithm. In this paper, the performance of the conventional converter is improved and a balance control algorithm is proposed for the proposed converter. Also, the system of the 1.5[kW] PCS is verified through an experiment examining the operation and stability.

Research and Development of High Performance 50-inch HD Plasma Display Panel

  • Choi, Kwang-Yeol;Min, Woong-Kee;Rhee, Byung-Joon;Ahn, Byung-Nam;Kim, Je-Seok;Moon, Won-Seok;Park, Min-Soo;Ryu, Byung-Gil;Kim, Sung-Tae;Ahn, Young-Joon;Yang, Sung-Soo;Kim, Kyung-Tae;Lee, Kyu-Sung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1547-1550
    • /
    • 2008
  • We are suggesting a new index to represent the performance of PDP, such as Specific Performance Index (SPI) that includes luminous efficacy and panel reflectance. High Xe gas mixture and low panel capacitance are well known as key factors to improve luminous efficacy of PDP [1]. However, higher driving voltage and longer discharge time lag is an obstacle when applying these technologies. Modified cell design, new materials and driving waveform enable us to overcome these obstacles. High efficient phosphor is also a key material to improve luminous efficacy. Phosphors coated with pigment are used to reduce panel reflectance. High performance 50-inch HD PDP with luminous efficacy of 2.3 lm/W has been developed.

  • PDF

Effect of Chemically Treated / Untreated Carbon Cloth: Potential Use as Electrode Materials in the Capacitive Deionization Process of Desalination of Aqueous Salt Solution

  • Thamilselvan, Annadurai;Nesaraj, A Samson;Noel, Michael;James, E.J.
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.139-145
    • /
    • 2015
  • Capacitive deionization (CDI) process is a novel approach for desalination of an aqueous salt solution. In the present study, an activated carbon cloth (ACC) is proposed as effective electrode material. Initially the carbon cloth was activated in 1 M and 8 M HNO3 for 9 hours at room temperature. The untreated and chemically activated carbon cloth (ACC) electrode materials were subjected to BET surface area measurements in order to get information about their specific surface area, average pore size, total pore volume and micropore area. The above materials were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) also. The electrochemical studies for the electrodes were done using cyclic voltammetry (CV) in 0.1 M Na2SO4 medium. From the studies, it was found that resistivity of the activated carbon cloth electrodes (treated in 1 M and 8 M HNO3) was decreased significantly by the chemical oxidation in nitric acid at room temperature and its capacitance was found to be 90 F/g (1 M HNO3) and 154 F/g (8 M HNO3) respectively in 0.1 M Na2SO4 solution. The capacitive deionization behavior of a single cell CDI with activated carbon cloth electrodes was also studied and reported in this work.

Effect of Phosphoric Acid on the Electronic and Diffusion Properties of the Anodic Passive Layer Formed on Pb-1.7%Sb Grid of Lead-acid Batteries

  • El-Rahman, H.A. Abd;Salih, S.A.;El-Wahab, A.M. Abd
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.76-84
    • /
    • 2011
  • Potentiostatic oxidation of Pb-1.7%Sb alloy used in the manufacture of grids of lead-acid batteries over the potential range from -1.0V to 2.3V in 5M $H_2SO_4$ in the absence and the presence of 0.4M $H_3PO_4$ and the self-discharge characteristics of the oxide layer formed is studied by electrochemical impedance spectroscopy (EIS). Depending on the potential value, sharp variations in resistance and capacitance of the alloy are recorded during the oxidation and they can be used for identification of the various substances involved in passive layer. Addition of $H_3PO_4$ is found to deteriorate the insulating properties of the passive layer by the retardation of the formation of $PbSO_4$. $H_3PO_4$ completely inhibits the current and impedance fluctuations recorded in $H_3PO_4$-free solutions in the potential range 0.5 V-1.7 V. These fluctuations are attributed to the occurrence of competitive redox processes that involve the formation of $PbSO_4$, $PbOSO_4$, PbO and $PbO_2$ and the repeated formation and breakdown of the passive layer. Self-discharge experiments indicate that the amount of $PbO_2$ formed in the presence of $H_3PO_4$ is lesser than in the $H_3PO_4$-free solutions. The start of transformation of $PbSO_4$ into $PbO_2$ is greatly shortened. $H_3PO_4$ facilitates the diffusion process of soluble species through the passive layer ($PbSO_4$ and basic $PbSO_4$) but impedes the diffusion process through $PbO_2$.

Design of ZOR antenna for 2.45GHz WLAN using CRLH-TL (CRLH-TL을 이용한 2.45GHz 무선랜용 ZOR 안테나 설계)

  • Kim, Seung-Hwan;Yu, Jin-Ha;Lee, Young-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.5
    • /
    • pp.773-780
    • /
    • 2012
  • ZOR(zeroth order resonance) antenna for 2.45GHz WLAN(wireless local area network) is designed by use of CRLH-TL(composite right left handed transmission line) meta-material. The electrical length of conventional antennas is determined generally according to the resonant frequency, whereas that of ZOR antenna can be determined without reference to the resonant frequency. Therefore ZOR antenna has advantage in miniaturization of antenna in comparison with conventional antennas. In order to design such ZOR antenna, first unit cell with electrical length shorter than a quarter wavelength at 2.45GHz is designed to the some characteristics of homogeneous medium. In order to decrease resonant frequency and enhance frequency bandwidth, the proposed antenna is fed by CPW(co-planar waveguide) and short stub between radiation patch and ground plane is used for obtaining both higher inductance and smaller capacitance than previous mush-room type of CRLH-TL.

The Electrochemical Characteristics of Mesopore Active Carbon Fiber for EDLC Electrode (EDLC 전극용 메조기공 활성탄소 섬유의 전기화학적 특성)

  • Kang, Chae-Yoen;Shin, Yun-Sung;Lee, Jong-Dae
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.10-14
    • /
    • 2011
  • The electrode material performances of electric double layer capacitor(EDLC) were investigated using mesopous active carbon fiber(ACF), which was prepared by the iron exchange method. The mesoporous ACF had pore characteristics of specific surface area around 1249, 664 $m^2$/g, mesoporous fraction around 70.6-81.3% and meanpore size around 2.78-4.14 nm. The results showed that as HNO3 treatment time decreased, the specific surface area increased and mesoporous fraction decreased. To investigate electrochemical performance of EDLC, unit cell was manufactured using mesoporus ACF, conducting material and binder; organic elctrolyte was used on this experiment. The specific capacitance of ACF treated with HNO3 for 2 hours turned out to be 0.47 $F/cm^2$and the results of the cyclic charge-discharge tests were stable. Thus, the electrochemical performance of EDLC was mainly dependent on specific surface area of ACF electrode and the diffusion resistance of charge decreased as the mesopore increased.

Electrical properties and ATP-sensitive K+ channel density of the rat substantia nigra pars compacta neurons (랫드 흑질 신경세포의 전기적 특성과 ATP-sensitive K+채널의 전류밀도)

  • Han, Seong-kyu;Park, Jin-bong;Ryu, Pan-dong
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.2
    • /
    • pp.275-282
    • /
    • 2000
  • Substantia nigra is known to highly express glibenclamide binding site, a protein associated to ATP-sensitive $K^{+}$ ($K_{ATP}$) channel in the brain. However, the functional expression of $K_{ATP}$ channels in the area is not yet known. In this work, we attempted to estimate the functional expression of $K_{ATP}$ channels in neurons of the substantia nigra pars compacta (SNC) in young rats using slice patch clamp technique. Membrane properties and whole cell currents attributable to $K_{ATP}$ channel were examined by the current and voltage clamp method, respectively. In SNC, two sub-populations of neurons were identified. Type I (rhythmic) neurons had low frequency rebound action potentials ($4.5{\pm}0.25Hz$, n=75) with rhythmic pattern. Type II (phasic) neurons were characterized by faster firing ($22.7{\pm}3.16Hz$, n=12). Both time constants and membrane capacitance in rhythmic neurons ($34.0{\pm}1.27$ ms, $270.0{\pm}11.83$ pF) and phasic neurons ($23.7{\pm}4.16$ ms, $184{\pm}35.2$ pF) were also significantly different. The current density of $K_{ATP}$ channels was $6.1{\pm}1.47$ pA/pF (2.44~15.43 pA/pF, n=8) at rhythmic neurons of young rats. Our data show that in SNC there are two types of neurons with different electrical properties and the density of $K_{ATP}$, channel of rhythmic neuron is about 600 channels per neuron.

  • PDF

Electrochemical Characteristics of Carbon/Carbon Hybrid Capacitor and Li-ion Battery/Hybrid Capacitor Combination (Carbon계 Hybrid Capacitor의 전기 화학적 기술 및 Li-ion Battery의 혼성 동력원 특성)

  • Lee, Sun-Young;Kim, Ick-Jun;Moon, Seong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.597-598
    • /
    • 2005
  • Recently, the performance of portable electric equipment can often improved by a Li-ion battery assisted by a supercapacitor. A supercapacitor can provide high power density as well as a low resistance in the hybrid system. In this study, we have prepared, as the pluse power souce, a commercially supplied Li-ion battery with a capacity of 700mAh and AC resistivity of $60m\Omega$ at 1kHz and nonaqeous asymmetric hybrid capacitor composed of an activated carbon cathode and MCMB anode, and have examined the electrochemical characteristics of hybrid capacitor and the pulse performances of parallel connected battery/hybrid capacitor source. The nonaqueous asymmetric hybrid capacitor, the stacks of 10 pairs of the cathode, the porous separator and the anode electrode were housed in Al-laminated film cell. The hybrid capacitor, which was charged and discharged at a constant current at $0.25mA/cm^2$ between 3 and 4.3V, has exhibited the capacitance of 100F. And the equivalent series resistance was $32m\Omega$ at 1kHz. By combining a Li-ion battery and a hybrid capacitor, the pulse performance of battery can be improved 23% in run time under a pulse discharge of 7C-rate.

  • PDF