• Title/Summary/Keyword: Ceiling temperature

Search Result 159, Processing Time 0.022 seconds

An Experimental Study of Smoke Movement in Tunnel Fires with Aspect Ratio of Tunnel Cross Section (터널 화재시 터널 단면의 종횡비에 따른 연기 거동에 관한)

  • Lee, Sung-Ryong;Ryou, Hong-Sun;Kime, Choong-Ik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.115-120
    • /
    • 2003
  • In this study, smoke movement in tunnel fires was investigated with various aspect ratio(0.5, 0.667, 1.0, 1.5, 2.0) of tunnel cross section. Reduced-scale experiments were carried out under the Froude scaling using 8.27 kW ethanol pool fire. Temperatures were measured under the ceiling and vertical direction along the center of the tunnel. Smoke front velocity and temperature decrease rate were reduced as higher aspect ratio of the tunnel cross-section. Smoke movement was evaluated by analysis of vertical temperature distribution 3 m downstream from the fire source. Elevation of smoke interface according to N percent rule was under about 60% of tunnel height.

  • PDF

An Experimental Study on Thermal and Environmental Characteristics of Various Heating Systems in the Residential House (주거용 건물의 난방 방식별 열적성능 및 실내환경 특성 평가를 위한 실험적 연구)

  • Lee, Choong-Kook;Cho, Sung-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.121-128
    • /
    • 2005
  • This is about experimental comparison study between convective heating and radiation heating system to use the design criteria for residential house. Experiment was done in EC(environment chamber) under simultaneous outdoor condition for 4 kinds of heating system such as CRHP(Ceiling Radiant Heating Panel), BEHC( Bottom Electric Heating Coil Mat), EFCU( Electric Fan Coil Unit) and CEHU( Convective Electric Heating Unit). Result show that CRHP ,which is radiation heating system, can consume more 23% energy than convective heating system when it is operated by dry bulb temperature but can save 1 ${\sim}$ 10% when operated by glove temperature and 27% when operated by MRT.

  • PDF

Examination on Effect of Horizontal Vent Position on Fire Phenomena in Enclosure (구획실 화재 현상에 대한 수평 개구부 위치의 영향 검토)

  • Park, Yu Mi;Lee, Chi Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.235-236
    • /
    • 2022
  • In the present study, the effect of horizontal vent position on fire phenomena in the enclosure with vertical and horizontal vents was examined using numerical simulation. Case 1 indicates the condition that the horizontal vent is in the center of the ceiling. Case 3 indicates the condition that the horizontal vent is far away from the vertical vent. Case 2 indicates the condition that the horizontal vent is installed between Case 1 and Case 3. The temperature distribution, smoke layer temperature, velocity distribution, and mass flow rate of horizontal vent flow were analyzed. In Case 2, the temperatures were lowest and the mass flow rate through the horizontal vent was largest. This is because the flame is inclined by the inflow through the vertical vent. Hence, to determine the proper horizontal vent location for the high smoke ventilation performance, the inflow through the vertical vent and its effect on flame behavior should be considered.

  • PDF

Measurement of the Device Properties of Fixed Temperature Heat Detectors for the Fire Modeling (화재모델링을 위한 정온식 열감지기의 장치물성 측정)

  • Park, Hee-Won;Cho, Jae-Ho;Mun, Sun-Yeo;Park, Chung-Hwa;Hwang, Cheol-Hong;Kim, Sung-Chan;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • The high predictive performance of fire detector models is essentially needed to assure the reliability of fire and evacuation modeling in the process of Performance-Based fire safety Design (PBD). The main objective of the present study is to measure input information in order to predictive the accurate activation time of fixed temperature heat detectors adopted in Fire Dynamics Simulator (FDS) as a representative fire model. To end this, Fire Detector Evaluator (FDE) which could be measured the device properties of detector was used, and the spot-type fixed temperature heat detectors of two thermistor types and one bimetal type were considered as research objectors. Activation temperature and Response Time Index (RTI) of detectors required for the fire modeling were measured, and then the RTI was measured for ceiling jet flow and vertical jet flow in consideration of the install location of detectors. The results of fire modeling using measured device properties were compared and validated with the experimental results of full-scale compartment fires. It was confirmed that, in result, the numerically predicted activation time of detector showed reasonable agreement with the measured activation time.

Forecast on Internal Condensation at Ceiling of Super-high Apartment Building Faced with Open Air (외기에 면한 초고층 아파트 천정 내부결로 예측)

  • Ahn Jae-Bong;Song Young-Woong;Choi Yoon Ki
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.626-629
    • /
    • 2003
  • This study is to forecast possible occurrence of internal condensation around parpets and H-beam located at the inside of balcony ceilings on the uppermost floor of super-high apartment buildings faced with open air in order to provide dwellers with more comfortable environment in the related space and get rid of their uneasiness about the condensation. In this study, we estimated internal condensation. which vary in accordance with humidity pressure distribution, at curtain walls, stone panels or lower parts of slabs that constitute outer space of the residence and are weak against heat, through temperature forecast and temperature distribution interpretation program at normal two-dimension temperature.

  • PDF

An Experimental Study of Smoke Movement in Tunnel Fire with Natural and Forced Ventilations (자연 및 강제 배기시의 터널 내 연기거동에 관한 실험적 연구)

  • Hwang Cheol-Hong;Yoo Byung-Hun;Kum Sung-Min;Kim Jung-Yup;Shin Hyun-Joon;Lee Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.711-721
    • /
    • 2005
  • In order to design of emergency ventilation systems, the smoke movements in tunnel fire with natural and forced ventilation were investigated. Reduced-scale experiments were carried out under the Froude scaling with novel fire source consisting many wicks. Temperature profiles were measured under the ceiling and vertical direction along the center of the tunnel and poisonous gases were measured at emergency exit point in the natural ventilation case. In forced ventilation, temperature profiles were measured with various flow rate to obtain critical velocity. The results showed that the interval of emergency exit having 225m was estimated reasonably through the measurements of temperature variation and poisonous gas in the natural ventilation. In the case of forced ventilation, the temperature distribution near fire source is remarkably different from that of natural ventilation. Also, the critical velocity to prevent upstream smoke flow has the range of 0.57m/s between 0.64m/s. Finally, it was also identified that although the increase of flow rate can suppress the backward flow of smoke to upstream direction, brings about the increase of flame intensity near stoichiometric fuel/air ratio.

Acceptable Supply Air Conditions of Dedicated Outdoor Air System for a High-rise Apartment Building (초고층 공동주택 외기전담 시스템 기반 중앙 공급식 환기시스템의 적정 급기조건 설정)

  • Kim, Min-Hwi;Kim, Jin-Hyo;Kwon, Oh-Hyun;Jeong, Jae-Weon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.285-290
    • /
    • 2009
  • The main thrust of this paper is to investigate acceptable supply air conditions of a dedicated outdoor air system (DOAS) for highrise apartment buildings. As for a typical $132-m^2$ apartment unit, it was assumed that centralized DOAS-Ceiling Radiant Cooling Panel was installed. Transient behavior and control characteristics of each system were modeled numerically using a commercial equation solver program. The optimized dew point temperature of the DOAS was discussed on the basis of the ASHRAE standard 62.1-2007 and the current Korean ventilation standard for apartments. It was found that the optimized dew point temperature of the DOAS supply air accommodating total latent load of a space is $11-12^{\circ}C$ and the appropriate supply air temperature of the DOAS is $11-12^{\circ}C$ in cooling period and neutral temperature of $18-20^{\circ}C$ in intermediate period.

  • PDF

Evaluation on Thermal Environment Installed Ventilating Fans in the Rotunda at New National Museum of Korea (기류유인팬을 이용한 새 국립중앙박물관 로튠다에서의 열환경 평가)

  • 이승철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.3
    • /
    • pp.303-309
    • /
    • 2004
  • In order to improve thermal comfort in the Rotunda, which is high and wide visiting space of the new national museum of Korea, eight ventilating fans were installed near the ceiling of Rotunda. It has been analyzed thermal comfort of Rotunda with/without ventilating fans by numerical simulation. To evaluate thermal comfort of the Rotunda, well-known indices, PMV and PPD were introduced. The results of present investigation show that temperature distribution of the case with fans is closer to target temperature than the case with-out fans at the breathing zone. In the case without fans, thermal stratification with 16$^{\circ}C$ of temperature difference occurs along the height of the Rotunda which makes the thermal environment worse and the PPD values reach up to 50% in the 6th floor connection passage. In the case with fans, however, the vertical temperature difference were reduced to 9$^{\circ}C$ and the PPD values were lower below 20%. Consequently, the ventilating fans adopted on this study are effectively used for improving the thermal comfort in large space structure with thermal stratification.

A Study on the Structural Characteristics and Estimation of Refrigerating. Load for the Fruit Storage (청과물저장고의 구조특성 및 냉각부하량 산정에 관한 연구)

  • 이석건;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.1
    • /
    • pp.4038-4051
    • /
    • 1976
  • This study was intended to provide the basic design creteria for the refrigerated storage, and to estimate the required optimum capacity of refrigerator for the different sizes and kinds of the existing fruit storage. The structural characteristics of the existing fruit storages in Pyungtaek-khun of Kyungki-do were surveyed. The average out-door air temperature during the expected storage life after harvesting, was obtained by analyzing the weather information. The heat transfer rates through the different models of storage walls were estimated. The refrigerating load required for different models of fruit storage was analyzed in the basis of out-door air temperature. The results obtained in this study are summarized as follows: 1. The fruit storages surveyed were constructed on-ground, under-ground and sub-ground type buildings. The majority of them being the on-ground buildings are mostly made of earth bricks with double walls. Rice hull was mostly used as the insulating materials for their walls and ceilings. About 42% of the buildings were with the horizontal ceiling, 22% with sloped ceiling, and about 36% without ceiling. About 60% of the storage buildings had floor without using insulated material. They were made of compacted earth. 2. There is no difference in heat transfer among six different types of double walls. The double wall, however, gives much less heat transfer than the single wall. Therefore, the double wall is recommended as the walls of the fruit storage on the point of heat transfer. Especially, in case of the single wall using concrete, the heat transfer is about five time of the double walls. It is evident that concrete is not proper wall material for the fruit storage without using special insulating material. 3. The heat transfer through the storage walls is in inverse proportion to the thickness of rice hull which is mostly used as the insulating material in the surveyed area. It is recommended that the thickness of rice hull used as the insulating material far storage wall is about 20cm in consideration of the decreasing rate of heat transfer and the available storage area. 4. The design refrigerating load for the on-ground storages having 20 pyung area is estimated in 4.07 to 4.16 ton refrigeration for double walls, and 5.23 to 6.97 ton refrigeration for single walls. During the long storage life, however, the average daily refrigerating load is ranged from 0.93 to 0.95 ton refrigeration for double walls, and from 1.15 to 1.47 ton refrigeration for single walls, respectively. 5. In case of single walls, 50.8 to 61.4 percent to total refrigerating load during the long storage life is caused by the heat transferred into the room space through walls, ceiling and floor. On the other hand, 39.1 to 40.7 percent is for the double walls. 6. The design and average daily refrigerating load increases in linear proportion to the size of storage area. As the size increases, the increasing rate of the refrigerating load is raised in proportion to the heat transfer rate of the wall. 7. The refrigerating load during the long storage life has close relationship to the out-door air temperature. The maximum refrigeration load is shown in later May, which is amounted to about 50 percent to the design refrigerating load. 8. It is noted that when the wall material having high heat transfer rate, such as the single wall made of concrete, is used, heating facilities are required for the period of later December to early February.

  • PDF

An Experimental Study of Smoke Movement in Tunnel Fires with Natural Ventilation (터널 화재시 자연 배기에 의한 연기 거동에 관한 실험적 연구)

  • 이성룡;김충익;유홍선
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • In this study, reduced-scale experiments were conducted to understand smoke movements in tunnel fires with the natural ventilation. The 1/20 scale experiments were conducted under the Froude scaling since the smoke movement in tunnels is governed by buoyancy force. Three cases of experiments, in which a natural vent location varied from 1 m, 2 m and 3 m from the fire source symmetrically, were conducted in order to evaluate the effect of the position of ventilation systems on smoke movement. In case of a poo1 whose diameter is 4.36 cm, the temperature of smoke layer passed through the vent was maintained 7~$8^{\circ}c$ less than that of smoke layer without a vent. In case of a pool whose diameter is 5.23 cm, the average velocity passed through the vent was decreased when it was close to the fire source. And the maximum delay time was 3.86s. In CASE 1, the ceiling temperature was decreased by approximately 8$^{\circ}C$ and the vertical temperature was decreased by approximately $7^{\circ}c$. In CASE 2, both ceiling and vertical temperature wert decreased by $3^{\circ}c$ and in CASE 3, they were decreased by $2^{\circ}c$ each. It was confirmed that the thickness of smoke layer was maintained uniformly under the 25% height of tunnel through the visualized smoke flow by a laser sheet and the digital camcoder.

  • PDF