• Title/Summary/Keyword: Cecropin P1

Search Result 9, Processing Time 0.025 seconds

Antibacterial Activity of Recombinant Pig Intestinal Parasite Cecropin P4 Peptide Secreted from Pichia pastoris

  • Song, Ki-Duk;Lee, Woon-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.2
    • /
    • pp.278-283
    • /
    • 2014
  • Cecropins (Cec) are antibacterial peptides and their expression is induced in a pig intestinal parasite Ascaris suum by bacterial infection. To explore the usefulness of its activity as an antibiotic, CecP4 cDNA was prepared and cloned into the pPICZ B expression vector and followed by the integration into AOX1 locus in Pichia pastoris. The supernatants from cell culture were collected after methanol induction and concentrated for the test of antimicrobial activity. The recombinant P. patoris having CecP4 showed antimicrobial activity when tested against Staphyllococcus aureus in disc diffusion assay. We selected one of the CecP4 clones (CecP4-2) and performed further studies with it. The growth of recombinant P. pastoris was optimized using various concentration of methanol, and it was found that 2% methanol in the culture induced more antibacterial activity, compared to 1% methanol. We extended the test of antimicrobial activity by applying the concentrated supernatant of CecP4 culture to Pseudomonas aeruginosa and E. coli respectively. Recombinant CecP4 also showed antimicrobial activity against both Pseudomona and E. coli, suggesting the broad spectrum of its antimicrobial activity. After improvements for the scale-up, it will be feasible to use recombinant CecP4 for supplementation to the feed to control microbial infections in young animals, such as piglets.

Structure-Antifungel Activity Relationships of Cecropin A Hybrid Peptides against Trichoderma sp.

  • Shin, Song-Yub;Lee, Dong-Gun;Lee, Sung-Gu;Kim, Kil-Lyong;Lee, Myung-Kyu;Hahm, Kyung-Soo
    • Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.21-24
    • /
    • 1997
  • The hybrid peptides, CA-ME, CA-MA and CA-BO, with the N-terminal sequence 1-8 of cecropin A and the N-terminal sequences 1-12 of melittin, magainin 2 and bombinin, respectively, have more improved antibacterial activities. CA-MA was found to have stronger antifungal activity against Trichoderma sp than other hybrid peptides and their parental peptides. In order to elucidate the relationships between the peptide structure and antifungal activity, several analogues of CA-MA or CA-BO were also designed and synthesized by the solid phase method. An tifungal activity was measured against T. reesei and T. viride, and hemolytic activity was measured by a solution method against human red blood cells. The residue 16 of CA-MA, Ser, was found to be important for antifungal activity. When the residue was substituted with Leu, showed powerful antifungal activity was dramatically decreased. CA-MA, P1, P4 and P5 designed in this study showed powerful antifungal activity against T. reesei and T. viride with low hemolytic activity against human red blood cells. These hybrid peptides will be potentially useful model to further design peptides with powerful antifungal activity for the effective therepy of fungal infection and understand the mechanisms of antifungal actions of hybrid peptides.

  • PDF

Construction of Bacillus subtilis strain engineered for expression of porcine β-defensin-2/cecropin P1 fusion antimicrobial peptides and its growth-promoting effect and antimicrobial activity

  • Xu, Jian;Zhong, Fei;Zhang, Yonghong;Zhang, Jianlou;Huo, Shanshan;Lin, Hongyu;Wang, Liyue;Cui, Dan;Li, Xiujin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.576-584
    • /
    • 2017
  • Objective: To generate recombinant Bacillus subtilis (B. subtilis) engineered for expression of porcine ${\beta}-defensin-2$ (pBD-2) and cecropin P1 (CP1) fusion antimicrobial peptide and investigate their anti-bacterial activity in vitro and their growth-promoting and disease resisting activity in vivo. Methods: The pBD-2 and CP1 fused gene was synthesized using the main codons of B. subtilis and inserted into plasmid pMK4 vector to construct their expression vector. The fusion peptide-expressing B. subtilis was constructed by transformation with the vector. The expressed fusion peptide was detected with Western blot. The antimicrobial activity of the expressed fusion peptide and the recovered pBD-2 and CP1 by enterokinase digestion in vitro was analyzed by the bacterial growth-inhibitory activity assay. To analyze the engineered B. subtilis on growth promotion and disease resistance, the weaned piglets were fed with basic diet supplemented with the recombinant B. subtilis. Then the piglets were challenged by enteropathogenic Escherichia coli (E. coli). The weight gain and diarrhea incidence of piglets were measured after challenge. Results: The recombinant B. subtilis engineered for expression of pBD-2/CP1 fusion peptide was successfully constructed using the main codons of the B. subtilis. Both expressed pBD-2/CP1 fusion peptide and their individual peptides recovered from parental fusion peptide by enterokinase digestion possessed the antimicrobial activities to a variety of the bacteria, including gram-negative bacteria (E. coli, Salmonella typhimurium, and Haemophilus parasuis) and grampositive bacteria (Staphylococcus aureus). Supplementing the engineered B. subtilis to the pig feed could significantly promote the piglet growth and reduced diarrhea incidence of the piglets. Conclusion: The generated B. subtilis strain can efficiently express pBD-2/CP1 fusion antimicrobial peptide, the recovered pBD-2 and CP1 peptides possess potent antimicrobial activities to a variety of bacterial species in vitro. Supplementation of the engineered B. subtilis in pig feed obviously promote piglet growth and resistance to the colibacillosis.

Production of the BmCecB1 antimicrobial peptide in transgenic silkworm

  • Kim, Seong Wan;Kim, Seong Ryul;Park, Seung Won;Choi, Kwang Ho;Goo, Tae Won
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.31 no.2
    • /
    • pp.85-89
    • /
    • 2015
  • This peptide has antibacterial activity against several Gram-positive and Gram-negative bacteria. Bombyx mori cecropinB1(BmCecB1) is antimicrobial peptides from Bombyx mori and belongs to cecropin family. Antimicrobial peptides are important components of the innate immune systems in all living organism. To produce the BmCecB1 antimicrobial peptide, we constructed transgenic silkworm that expressed BmCecB1 gene under the control BmA3 promoter using piggyBac vector. The use of the 3xP3-driven EGFP cDNA as a marker allowed us to rapidly distinguish transgenic silkworm. Mixtures of the donor vector and helper vector were micro-injected into 600 eggs of bivoltin silkworms, Baegokjam. In total, 49 larvae (G0) were hatched and allowed to develop into moths. The resulting G1 generation consisted of 22 broods, and we selected 2 broods containing at least 1 EGFP-positive embryo. The rate of successful transgenesis for the G1 broods was 9%. We identified 9 EGFP-positive G1 moths and these were backcrossed with wild-type moths. With the aim of identifying a BmCecB1 as antimicrobial peptide, we investigated the Radical diffusion Assay (RDA) and then demonstrated that BmCecB1 possesses high antibacterial activities against Gram-negative bacteria.

Influences of Hinge Region of a Systhetic Antimicrobial Peptide, Cecropin A(1-13)-Melittin(1-13) Hybrid on Antibiotic Activity

  • 신송엽;강주현;이동건;장소윤;서무열;김길룡;함경수
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.9
    • /
    • pp.1078-1084
    • /
    • 1999
  • A synthetic cecropin A(1-13)-melittin(1-13) [CA-ME] hybrid peptide was known to be an antimicrobial peptide having strong antibacterial, antifungal and antitumor activity with minimal cytotoxic effect against human erythrocyte. Analogues were synthesized to investigate the influences of the flexible hinge region of CA-ME on the antibiotic activity. Antibiotic activity of the peptides was measured by the growth inhibition against bac-terial, fungal and tumor cells and vesicle-aggregating or disrupting activity. The deletion of Gln-Gly-Ile (P1) or Gly-Gln-Gly-Ile-Gly (P3) from CA-ME brought about a significant decrease on the antibiotic activities. In contrast, Gly-Ile-Gly deletion (P2) from CA-ME or Pro insertion (P5) instead of Gly-Gln-Gly-Ile-Gly of CA-ME retained antibiotic activity. This result indicated that the flexible hinge or β-bend structure provided by Gly-Gln-Gly-Ile-Gly, Gln-Gly, or Pro in the central region of the peptides is requisite for its effective antibiotic activity and may facilitate easily the hydrophobic C-terminal region of the peptide to penetrate the lipid bilayers of the target cell membrane. In contrast, P4 and P6 with Gly-Gln-Gly-Pro-Gly or Gly-Gln-Pro in the central region of the peptide caused a drastic reduction on the antibiotic activities. This result suggested that the con-secutive β-bend structure provided by Gly-Gln-Gly-Pro-Gly or Gly-Gln-Pro in the central hinge region of the peptide seems to interrupt the ion channel/pore formation on the target cell membranes.

Study of antimicrobial activity and the mode of action of Anal P5 peptide

  • Park, Yoonkyung;Hahm, Kyung-Soo
    • Journal of Integrative Natural Science
    • /
    • v.1 no.1
    • /
    • pp.47-53
    • /
    • 2008
  • In a previous study, we showed that Cecropin A (1-8)-Magainin 2 (1-12) hybrid peptide (CA-MA)'s analogue, Anal P5, exhibit broad-spectrum antimicrobial activity. Anal P5, designed by flexible region (positions 9, 10)-substitution, Lys- (positions 4, 8, 14, 15) and Leu- (positions 5, 6, 12, 13, 16, 17, 20) substitutions, showed an enhanced antimicrobial and antitumor activity without hemolysis. The primary objective of the present study was to gain insight into the relevant mechanisms of antimicrobial activities of Anal P5 by using flow cytometric analysis. Anal P5 exhibits strong antifungal activity in a salt concentration independent manner. In addition, Anal P5 causes significant morphological alterations of the bacterial surfaces as shown by scanning electron microscopy, supporting its antibacterial activity. Its potent antibiotic activity suggests that Anal P5 is an excellent candidate as a lead compound for the development of novel antibiotic agents.

  • PDF

Synergistic Killing Effect of Synthetic Peptide P20 and Cefotaxime on Methicillin-Resistant Nosocomial Isolates of Staphylococcus aureus

  • Jung, Hyun-Jun;Choi, Kyu-Sik;Lee, Dong-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1039-1046
    • /
    • 2005
  • The salt resistance of antibacterial activity and synergistic effect with clinically used antibiotic agents are critical factors in developing effective peptide antibiotic drugs. For this reason, we investigated the resistance of antibacterial activity to antagonism induced by NaCl and $MgCl_2$ and the synergistic effect of P20 with cefotaxime. P20 is a 20-residue synthetic peptide derived from a cecropin A (CA)-melittin(ME) hybrid peptide. In this study, P20 was found to have potent antibacterial activity against clinically isolated methicillin-resistant Staphylococcus aureus (MRSA) strains without hemolytic activity against human erythrocytes. The combination study revealed that P20 in combination with cefotaxime showed synergistic antibacterial activity in an energy-dependent manner. We also confirmed the synergism between P20 and cefotaxime by fluorescence-activated flow cytometric analysis by staining bacterial cells with propidium iodide (PI) and bis-(1,3-dibutylbarbituric acid) trimethine oxonol (BOX). This study suggests that P20 may be useful as a therapeutic antibiotic peptide with synergistic effect in combination with conventional antibiotic agents.

Potentiation of Apoptin-Induced Apoptosis by Cecropin B-Like Antibacterial Peptide ABPs1 in Human HeLa Cervical Cancer Cell Lines is Associated with Membrane Pore Formation and Caspase-3 Activation

  • Birame, Basse Mame;Wang, Jigui;Yu, Fuxian;Sun, Jiazeng;Li, Zhili;Liu, Weiquan
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.756-764
    • /
    • 2014
  • Apoptin, a chicken anemia virus-encoded protein, induces apoptosis in chicken or human tumor cells, localizing in their nuclei as opposed to the cytoplasm of non-transformed cells. The present study was undertaken to investigate whether ABPs1 could potentiate apoptin-induced apoptosis in HeLa cells. ABPs1 and the apoptin genes were successfully cloned into pIRES2-EGFP expression vector and expressed in HeLa cells. We report that ABPs1 augments apoptin cell growth inhibition in a concentration- and time-dependent manner. The DAPI staining and scanning electron microscopy observations revealed apoptotic bodies and plasma membrane pores, which were attributed to apoptin and ABPs1, respectively. Further, ABPs1 in combination with apoptin was found to increase the expression of Bax and to decrease the expression of survivin compared with either agent alone or the control. The apoptotic rate of HeLa cells treated with ABPs1 and apoptin in combination for 48 h was 53.95%. The two-gene combination increased the caspase-3 activity of HeLa cells. Taken together, our study suggests that ABPs1 combined with apoptin significantly inhibits HeLa cell proliferation, and induces cell apoptosis through membrane defects, up-regulation of Bax expression, down-regulation of survivin expression, and activation of the caspase-3 pathway. Thus, the combination of ABPs1 and apoptin could serve as a means to develop novel gene therapeutic agents against human cervical cancer.

Analogues of Hybrid Antimicrobial Peptide, CAMA-P2, Designed with Improved Antimicrobial and Synergistic Activities

  • Jeong, Ki-Woong;Shin, So-Young;Kim, Jin-Kyoung;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2577-2583
    • /
    • 2011
  • We have designed a 20-residue hybrid peptide CA(1-8)-MA(1-12) (CAMA) incorporating residues 1-8 of cecropin A (CA) and residues 1-12 of magainin 2 (MA) with high bacterial cell selectivity. CAMA-P2 is an ${\alpha}$-helical antimicrobial peptide designed from a CAMA hybrid peptide and substitution of Gly-Ile-Gly hinge sequence of CAMA to Pro influences the flexibility at central part of CAMA. Based on structure-activity relationships of CAMA peptides, to investigate the effects of the total positive charges on antimicrobial activity of CAMA-P2, the $Ser^{14}{\rightarrow}$Lys analogue (CAMA-syn1) was synthesized. The role of tryptophan at C-terminal ${\alpha}$-helix on its antimicrobial activity as well as synergistic activity was also investigated using $Ser^{14}{\rightarrow}$Lys/$Phe^{18}{\rightarrow}$Trp analogue (CAMA-syn2). Also, we designed CAMA-syn3 by substitution of $Lys^{16}$ located opposite side of substituted $Lys^{14}$ of CAMA-syn1 with Leu residue, resulting in increase of hydrophobicity and amphipathicity of the peptide. All of CAMA-syn analogues showed good antimicrobial activities similar to those of CAMA and CAMA-P2. The CAMA-syn1 and CAMA-syn2 showed low hemolytic activity and cytotoxicity against human keratinocyte Haca-T cells while CAMA-syn3 showed hemolytic activity and cytotoxicity at its MIC value. We then investigated their abilities to act synergistically in combination with the antimicrobial flavonoids and synthetic compounds screened in our laboratory. The results showed that all peptides exhibited synergistic effects with dihydrobinetin, while only CAMA-syn2 exhibited synergistic effects with YKAs3001 against both S. aureus and MRSA, suggesting that Trp residue at C-terminus of CAMA-syn2 may facilitate the polar antibiotic flavonoids and synthetic compounds to permeabilize the membrane. This study will be useful for the development of new antibiotic peptides with potent antimicrobial and synergistic activity but without cytotoxicity.