Browse > Article
http://dx.doi.org/10.5713/ajas.2013.13615

Antibacterial Activity of Recombinant Pig Intestinal Parasite Cecropin P4 Peptide Secreted from Pichia pastoris  

Song, Ki-Duk (Genomic Informatics Center, Han Kyong National University)
Lee, Woon-Kyu (Laboratory of Developmental Genetics, Department of Advanced Biomedical Sciences, School of Medicine, Inha University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.27, no.2, 2014 , pp. 278-283 More about this Journal
Abstract
Cecropins (Cec) are antibacterial peptides and their expression is induced in a pig intestinal parasite Ascaris suum by bacterial infection. To explore the usefulness of its activity as an antibiotic, CecP4 cDNA was prepared and cloned into the pPICZ B expression vector and followed by the integration into AOX1 locus in Pichia pastoris. The supernatants from cell culture were collected after methanol induction and concentrated for the test of antimicrobial activity. The recombinant P. patoris having CecP4 showed antimicrobial activity when tested against Staphyllococcus aureus in disc diffusion assay. We selected one of the CecP4 clones (CecP4-2) and performed further studies with it. The growth of recombinant P. pastoris was optimized using various concentration of methanol, and it was found that 2% methanol in the culture induced more antibacterial activity, compared to 1% methanol. We extended the test of antimicrobial activity by applying the concentrated supernatant of CecP4 culture to Pseudomonas aeruginosa and E. coli respectively. Recombinant CecP4 also showed antimicrobial activity against both Pseudomona and E. coli, suggesting the broad spectrum of its antimicrobial activity. After improvements for the scale-up, it will be feasible to use recombinant CecP4 for supplementation to the feed to control microbial infections in young animals, such as piglets.
Keywords
Cecropin; Ascars suum; Pichia pastoris; Methanol; Antimicrobial Activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Allen, H. K., U. Y. Levine, T. Looft, M. Bandrick, and T. A. Casey. 2013. Treatment, promotion, commotion: antibiotic alternatives in food-producing animals. Trends Microbiol. 21:14-119.   DOI   ScienceOn
2 Bals, R. 2000. Epithelial antimicrobial peptides in host defense against infection. Respir. Res. 1:141-150.   DOI   ScienceOn
3 Cereghino, J. L. and J. M. Cregg. 2000. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev. 24:45-66.   DOI   ScienceOn
4 Cregg, J. M., J. L. Cereghino, J. Shi, and D. R. Higgins. 2000. Recombinant protein expression in Pichia pastoris. Mol. Biotechnol. 16:23-52.   DOI   ScienceOn
5 Daly, R. and M. T. Hearn. 2005. Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J. Mol. Recognit. 18:119-138.   DOI   ScienceOn
6 Damasceno, L. M., I. Pla, H. J. Chang, L. Cohen, G. Ritter, L. J. Old, and C. A. Batt. 2004. An optimized fermentation process for high-level production of a single-chain Fv antibody fragment in Pichia pastoris. Protein Expr. Purif. 37:18-26.   DOI   ScienceOn
7 Gazit, E., W. J. Lee, P. T. Brey, and Y. Shai. 1994. Mode of action of the antibacterial cecropin B2: a spectrofluorometric study. Biochemistry 33:10681-10692.   DOI   ScienceOn
8 Guo, C., Y. Huang, H. Zheng, L. Tang, J. He, L. Xiang, D. Liu, and H. Jiang. 2012. Secretion and activity of antimicrobial peptide cecropin D expressed in Pichia pastoris. Exp. Ther. Med. 4:1063-1068.
9 Hancock, R. E. and M. G. Scott. 2000. The role of antimicrobial peptides in animal defenses. Proc. Natl. Acad. Sci. USA. 97:8856-8861.   DOI   ScienceOn
10 Lee, J. -Y., A. Boman, C. X. Sun, M. Andersson, H. Jornvall, V. Mutt, and H. G. Boman. 1989. Antibacterial peptides from pig intestine: isolation of a mammalian cecropin. Proc. Natl. Acad. Sci. USA. 86:9159-9162.   DOI   ScienceOn
11 Lee, D. G., J. H. Park, S. Y. Shin, S. G. Lee, M. K. Lee, K. L. Kim, and K. S. Hahm. 1997. Design of novel analogue peptides with potent fungicidal but low hemolytic activity based on the cecropin A-melittin hybrid structure. Biochem. Mol. Biol. Int. 43:489-498.
12 Macauley-Patrick, S., M. L. Fazenda, B. McNeil, and L. M. Harvey. 2005. Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249-270.   DOI   ScienceOn
13 Pillai, A., S. Ueno, H. Zhang, J. M. Lee, and Y. Kato. 2005. Cecropin P1 and novel nematode cecropins: a bacteria-inducible antimicrobial peptide family in the nematode Ascaris suum. Biochem. J. 390:207-214.   DOI   ScienceOn
14 Reddy, K. V., R. D. Yedery, and C. Aranha. 2004. Antimicrobial peptides: premises and promises. Int. J. Antimicrob. Agents 24:536-547.   DOI   ScienceOn
15 Sipos, D., M. Andersson, and A. Ehrenberg. 1992. The structure of the mammalian antibacterial peptide cecropin P1 in solution, determined by proton-NMR. Eur. J. Biochem. 209:163-169.   DOI   ScienceOn
16 Ueno, S., K. Kusaka, Y. Tamada, M. Minaba, H. Zhang, P. C. Wang, and Y. Kato. 2008. Anionic C-terminal proregion of nematode antimicrobial peptide cecropin P4 precursor inhibits antimicrobial activity of the mature peptide. Biosci. Biotechnol. Biochem. 72:3281-3284.   DOI   ScienceOn
17 Steiner, H. 1982. Secondary structure of the cecropins: antibacterial peptides from the moth Hyalophora cecropia. FEBS Lett. 137:283-287.   DOI   ScienceOn