• Title/Summary/Keyword: Cdc25C and Wee1

Search Result 6, Processing Time 0.028 seconds

Expression Patterns of Cell Cycle Related Genes mRNA and Proteins in the Mouse Ovary (세포주기와 관련된 유전자들의 난소 내 mRNA 및 단백질 발현)

  • Park, Chang-Eun;Hong, Sung-No
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.38 no.1
    • /
    • pp.72-81
    • /
    • 2006
  • Wee1 is a kinase regulator of the M-phase promoting factor (MPF; a complex of cdc2 and cyclin B1). The present study was undertaken to determine the role(s) of wee1 in the early stages of mouse ovarian follicles. The expression of wee1 and the correlated cell-cycle components, namely cdc2, cyclin B1, and cdc25C, were evaluated by immunohistochemistry. In addition, the expression of Tyr15-phosphorylated cdc2 (cdc2-p) was also examined to determine whether wee1 kinase phosphorylates cdc2 existed. Each component except cdc25C was found cytoplasmic in the oocytes at all stages of follicles, while cdc25C was not detected in primordial follicles. It was found primarily in ovarian somatic cells and to a small extent in granulosa cells of the growing follicles. To further confirm the expression of cell-cycle components in the primordial follicular oocytes, day1 ovaries were enzymatically and mechanically dissociated, then oocytes were isolated from somatic including pre-granulosa cells, and we confirmed that cdc2-p was expressed in oocytes of primordial follicles. From the results of the present study, we concluded wee1, without the counteracting cdc25C, would cause meiotic arrest of oocytes by the inhibitory phosphorylation of cdc2. The expression of all these proteins in the granulosa cells of growing follicles may regulate their mitosis concurrently with the growth of oocytes and follicles.

  • PDF

Actin Dysfunction Induces Cell Cycle Delay at G2/M with Sustained ERK and RSK Activation in IMR-90 Normal Human Fibroblasts

  • Shrestha, Deepmala;Choi, Daeun;Song, Kiwon
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.436-443
    • /
    • 2018
  • The actin cytoskeleton plays a key role in the entry of mitosis as well as in cytokinesis. In a previous study, we showed that actin disruption delays mitotic entry at G2/M by sustained activation of extracellular signal-related kinase 1/2 (ERK1/2) in primary cells but not in transformed cancer cell lines. Here, we examined the mechanism of cell cycle delay at G2/M by actin dysfunction in IMR-90 normal human fibroblasts. We observed that de-polymerization of actin with cytochalasin D (CD) constitutively activated ribosomal S6 kinase (RSK) and induced inhibitory phosphorylation of Cdc2 (Tyr 15) in IMR-90 cells. In the presence of an actin defect in IMR-90 cells, activating phosphorylation of Wee1 kinase (Ser 642) and inhibitory phosphorylation of Cdc25C (Ser 216) was also maintained. However, when kinase-dead RSK (DN-RSK) was overexpressed, we observed sustained activation of ERK1/2, but no delay in the G2/M transition, demonstrating that RSK functions downstream of ERK in cell cycle delay by actin dysfunction. In DN-RSK overexpressing IMR-90 cells treated with CD, phosphorylation of Cdc25C (Ser 216) was blocked and phosphorylation of Cdc2 (Tyr 15) was decreased, but the phosphorylation of Wee1 (Ser 642) was maintained, demonstrating that RSK directly controls phosphorylation of Cdc25C (Ser 216), but not the activity of Wee1. These results strongly suggest that actin dysfunction in primary cells activates ERK1/2 to inhibit Cdc2, delaying the cell cycle at G2/M by activating downstream RSK, which phosphorylates and blocks Cdc25C, and by directly activating Wee1.

Anti-oxidative and Anti-cancer Activities by Cell Cycle Regulation of Salsola collina Extract (솔장다리 추출물의 항산화 활성 및 세포주기조절에 의한 항암 활성 분석)

  • Oh, You Na;Jin, Soojung;Park, Hyun-Jin;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.1
    • /
    • pp.73-81
    • /
    • 2014
  • Salsola collina, also known as Russian thistle, is widely distributed in and around waste facilities, roadsides, and drought and semi-drought areas, and is used as a traditional folk remedy in Chinese medicine for the treatment of hypertension. In this study, we have evaluated the anti-oxidative and anti-cancer activities of the ethanol extract of S. collina Pall. (EESC), and the molecular mechanisms of its anti-cancer effects on human colon carcinoma HT29 cells. EESC exhibited anti-oxidative activity through DPPH radical scavenging capacity and showed cytotoxic activity in a dose-dependent manner in HT29 cells. After EESC treatment, HT29 cells altered their morphology, becoming smaller and irregular in shape. EESC also induced cell accumulation in the G2/M phase in a dose-dependent manner, accompanied by a decrease of cell population in the G1 phase. The G2/M arrest by EESC was associated with the increased expression of cyclin-dependent kinase (CDK) inhibitor p21 and Wee1 kinase, which phosphorylates, or inactivates, Cdc2. EESC treatment induced the phosphorylation of Cdc2 and Cdc25C, and inhibited cyclin A and Cdc25C protein expression. In addition, S arrest was induced by the highest concentration of EESC treatment, associated with a decrease of cyclin A and Cdk2 expression. These findings suggest that EESC may possess remarkable anti-oxidative activity and exert an anti-cancer effect in HT29 cells by cell cycle regulation.

Growth Arrest by Bufonis Venenum is Associated with Inhibition of Cdc2 and Cdc25C, and Induction of p21WAF1/CIP1 in T24 Human Bladder Carcinoma Cells (섬수 추출물에 의한 T24 인체 방광암세포의 증식억제에 관한 연구)

  • Park Tae Yeol;Park Cheol;Yoon Hwa Jung;Choi Yung Hyun;Ko Woo Shin
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.5
    • /
    • pp.1449-1455
    • /
    • 2004
  • Bufonis venenum (dried toad venom; Chinese name, Chan su) is a traditional Chinese medicine obtained from the skin venom gland of the toad. It has long been used in treating arrhythmia and other heart diseases in China and other Asian countries. Additionally, Bufonis venenum has been reported to selectively inhibit the growth of various lines of human cancer cells. In the present study, it was examined the effects of extract of Bufonis venenum (EBV) on the growth of human bladder carcinoma cell line T24 in order to investigate the anti-proliferative mechanism and induction of apoptosis by EBV. Treatment of T24 cells to EBV resulted in the growth inhibition, morphological change and induction of apoptotic cell death in a dose-dependent manner. Flow cytometric analysis revealed that EBV treatment caused G2/M phase arrest of the cell cycle and down-regulation of cyclin A, cyclin B1 and Cdc2, which was associated with a marked up-regulation of cyclin-dependent kinases (Cdks) inhibitor p21 (WAF1/CIP1) in a p53-independent manner. The Cdc25C expression was also significantly inhibited by EBV treatment, however Wee1 kinase expression was not affected. The induction of apoptotic cell death by EBV was connected with down-regulation of anti-apoptotic Bcl-XS/L expression without alteration pro-apoptotic Bax expression. Taken together, these findings suggest that EBV may be a potential chemotherapeutic agent for the control of human bladder carcinorma cells and further studies will be needed to identify the active compounds that confer the anti-cancer activity of EBV.

Anti-proliferative Effects of Water Extract of Agaricus blazei Murill in Human Lung Cancer Cell Line A549 (A549 인체폐암세포의 증식에 미치는 신령버섯 추출물의 영향에 관한 연구)

  • Choi, Woo-Young;Park, Cheol;Lee, Jae-Yun;Kim, Gi-Young;Park, Yeong-Min;Jeong, Yong-Kee;Lee, Won-Ho;Choi, Yung-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.8
    • /
    • pp.1237-1245
    • /
    • 2004
  • Agaricus blazei Murill is a medicinal mushroom native to Brazil. It used to be a source of antitumor and immunoactive compounds and considered a health food in many countries. In the present study, it was examined the effects of water extract of A. blazei (WEAB) on the growth of human lung carcinoma cell line A549 in order to investigate the anti-proliferative mechanism by WEAB. Treatment of A549 cells to WEAB resulted in the growth inhibition, morphological change and induction of apoptotic cell death in a dose-dependent manner as measured by MTT assay and flow cytometric analysis. Flow cytometric analysis revealed that WEAB caused G2/M phase arrest of the cell cycle, which was associated with a down-regulation of cyclin A in both transcriptional and translational levels. WEAB treatment induced a marked up-regulation of cyclin-dependent kinase (Cdk) inhibitor p21, however, the levels of Cdk2, Cdc2, Wee1, Cdc25C and p53 expression were remained unchanged in WEAB treated cells. In addition, WEAB treatment inhibited the levels of cyclooxygenase (COX)-2 mRNA and protein without alteration of COX-l expression. Taken together, these findings suggest that WEAB may be a potential chemotherapeutic agent for the control of human lung carcinorma cells and further studies will be needed to identify the active compounds that confer the anti-cancer activity of WEAB. Once such compounds are identified, the mechanisms by which they exert their effects can begin to be characterized.

Induction of G2/M Arrest and Apoptosis by the Methanol Extract of Typha orientalis in Human Colon Adenocarcinoma HT29 Cells (포황 메탄올 추출물에 의한 인체 대장암 세포주 HT29의 G2/M Arrest 및 Apoptosis 유발)

  • Jin, Soojung;Yun, Seung-Geun;Oh, You Na;Lee, Ji-Young;Park, Hyun-Jin;Jin, Kyong-Suk;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.4
    • /
    • pp.425-432
    • /
    • 2013
  • Typha orientalis, also known as bulrush or cattail, is a perennial herbaceous plant found in freshwater wetlands and has been widely used in constructed wetlands for wastewater treatment. Recent data has revealed that SH21B, a mixture composed of seven herbs including T. orientalis, exhibited an anti-adipogenic activity by the inhibition of the expression of adipogenic regulators. However, the anti-cancer effect of T. orientalis and its molecular mechanisms remain unclear. In this study, we evaluated the anti-cancer effect and its mechanism in the methanol extract of T. orientalis (METO) on human colon carcinoma HT29 cells. It was found that METO treatment showed cytotoxic activity in a dose-dependent manner, and induced G2/M cell cycle arrest and apoptosis in HT29 cells. The induction of G2/M arrest by METO was associated with the up-regulation of phospho-Cdc2 (Tyr15), an inactive form of Cdc2 and the down-regulation of Cdc25c phosphatase. METO also induced tumor suppressor p53 and cyclin-dependent kinase inhibitor p21 (WAF1/CIP1) expression. In addition, METO-induced apoptosis was characterized by the proteolytic activation of caspase-3, degradation of poly ADP ribose polymerase (PARP), and up-regulation of death receptor FAS and pro-apoptotic Bax expression. Collectively, these results indicate that the cell cycle inhibition and apoptosis induction of METO in HT29 cells allows for the possibility of its use in anti-cancer therapies.