• 제목/요약/키워드: CdS 양자점

검색결과 53건 처리시간 0.034초

A stable solid state quantum dot sensitized solar cell with p-type CuSCN semiconductor and its dopping effect

  • 김희진;설민수;용기중
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.378-378
    • /
    • 2011
  • 본 연구에서는 ZnO 나노선 기판을 제작하여 그 위에 밴드갭이 낮은 물질인 CdS, CdSe를 증착시킨 후 p-type 반도체 물질인 CuSCN을 증착시켜 안정성이 향상된 양자점 감응형 태양전지를 제작하였다. ZnO 나노선 기판은 투명한 FTO 기판 위에 ZnO를 진공증착시켜 seed layer를 제작하고 그 위에 $10{\mu}m$정도의 길이의 나노와이어를 성장시킨 후, 밴드갭이 낮은 CdS, CdSe 물질과의 다중접합을 이용하여 제작하고, 이러한 나노선 구조위에 chemical solution deposition을 이용하여 ${\beta}$-CuSCN을 형성시켰다. 양자점 감응형 태양전지는 ZnO 나노선을 photoanode로 이용하고 ZnO 나노선은 암모니아수와 아연염을 이용한, 비교적 저온의 수열합성법을 통해 합성하였고, sensitizer로 쓰인 CdS, CdSe 물질은 CBD방식을 통하여 합성된 나노선 위에 in-situ로 접합시켰다. 또한, 기존의 액체전해질을 이용한 양자점 감응형 태양전지의 안정성을 향상시키기 위해 p-type의 반도체 물질인 CuSCN물질을 propyl sulfide를 이용, ${\sim}80^{\circ}C$의 열을 가하여 in-situ 방식으로 다공성 구조에 효율적으로 접합이 가능하도록 deposition하였다. 일반적으로, CuSCN film은 홀 전도체로서의 장점을 지닌 반면, 전도성이 낮은 단점이 있기 때문에 이를 향상시키기 위해서 첨가제를 이용, 농도에 따라서 전도도가 향상되고 셀의 성능이 향상되는 것을 확인하였다. 이와 같이 합성된 구조는 주사전자현미경(SEM), X-선 회절(XRD), 솔라시뮬레이터 등의 분석장비를 이용하여 태양전지로서의 특성을 분석하였다. 또한 안정성 평가를 위하여 시간에 따른 셀의 특성변화도 비교하였다.

  • PDF

CdS@Ag 코어 쉘 구조 양자점의 광학적 특성 연구 (Optical Properties of CdS@Ag Core-shell Structure Quantum Dots)

  • 임상엽;이창열;정은희;최문구;최중길;박승한
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2003년도 제14회 정기총회 및 03년 동계학술발표회
    • /
    • pp.6-7
    • /
    • 2003
  • 반도체 양자점 구조는 양자크기 효과를 이용하여, 인공적으로 원자와 같이 매우 좁은 선폭의 에너지준위를 만들어 낼 수 있다는 점에서 관심을 끌고 있는 물질 구조이다. 특히 양자점 구조는 크기에 따라 에너지 준위의 위치가 조절되므로, 기본적인 물성을 탐구하는 물리적인 관점에서 뿐만이 아니라 실용적인 관점에서도 이를 이용한 전자, 광전자 및 광소자에 관한 연구가 활발히 진행되고 있다. 반도체 양자점은 여러 가지 다양한 방법으로 제작되고 있는데 대표적으로 유리 안에 반도체 미세구조를 첨가하는 방법, Stranski-Krastanow 생장에 의한 자발 형성 방법, 리소그래피에 의한 식각 방법, 그리고 화학반응에 의해 콜로이드 상태로 제작하는 방법 등이 있다. (중략)

  • PDF

Qauntum Dot Sensitized Solar Cell Using Ag2S/CdS Co-sensitizer

  • 황인성;용기중
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.461.1-461.1
    • /
    • 2014
  • 본 연구진에서는 기존에 Ag2S 양자점을 흡광층으로 활용하여 양자점 감응형 태양전지(QDSC)를 제작, 그 성능과 특징을 분석하여 발표한 바 있다. 기존 연구에서 제작된 Ag2S QDSC는 11 mA/cm2의 비교적 높은 광전류와 260 mV의 비교적 낮은 전압으로 인해 1.2%의 광전환효율 성능을 나타내는 것으로 보고되었다. 추후 연구로 진행된 본 결과에서는, 기존에 Single absorber로 사용된 Ag2S의 한계를 보완하기 위해 CdS를 도입하여 co-sensitization을 활용하였다. CdS는 약 2.3 eV의 밴드갭 에너지를 갖는 물질로, 1.1 eV의 밴드갭을 갖는 Ag2S에 비해 흡광 영역은 좁지만 그만큼 전자-정공 재결합을 억제할 수 있는 장점을 가지고 있다. 또한, 전도층으로 사용한 n-type 물질인 ZnO 나노선과의 밴드구조가 매우 적합하게 조화되어, ZnO/CdS/Ag2S 순서로 이종구조를 접합시켰을 때 세 물질의 Conduction band level과 Valence band level이 순차적으로 연결되는 cascade-shaped 밴드구조를 이루게 된다. 빛을 받아 Ag2S와 CdS에서 생성된 전자는 이 cascade 모양의 conduction band를 따라 순차적으로 ZnO로 잘 전달되게 되어, 효율 향상에 큰 도움을 주었다. 이런 장점들로 인해, CdS-Ag2S co-sensitized QDSC는 Ag2S QDSC에 비해 2배나 향상된 효율인 2.4%를 기록하였으며, 이는 IPCE spectrum 측정 등으로 근거가 뒷받침되었다.

  • PDF

메조포러스 이산화티타늄 박막 기반 양자점-감응 태양전지 (Quantum Dot-Sensitized Solar Cells Based on Mesoporous TiO2 Thin Films)

  • 이효중
    • 전기화학회지
    • /
    • 제18권1호
    • /
    • pp.38-44
    • /
    • 2015
  • 본 총설은 다공성의 메조포러스 이산화티타늄 박막을 기반으로 하는 양자점-감응 태양 전지의 최근 발전 과정에 대해 정리하였다. 나노스케일의 무기물 양자점이 가지는 본질적 특성에 기반하고 다양한 양자점 구성 물질을 이용하여, 용액-공정 기반의 다양한 3세대 박막 태양전지를 만들 수 있었다. 양자점 감응제는 준비하는 방법에 따라 크게 2가지로 나눌 수 있는데, 첫 번째는 콜로이드 형태로 용액상에서 준비한 다음 $TiO_2$ 표면에 붙이는 것이고 두 번째는 양자점 전구체가 녹아있는 화학조를 이용하여 직접 $TiO_2$ 표면에 성장시키는 것이다. 폴리썰파이드 전해질을 사용하여, 콜로이드 양자점 감응제의 경우는 최근 들어 정밀한 조성 조절을 통하여 전체 광전 변환효율이 ~7%에 이르렀고 화학조 침전법을 이용하여 준비된 대표적 감응제인 CdS/CdSe는 ~5%의 효율을 보이고 있다. 앞으로는 지금까지 보고된 양자점 감응제의 뛰어난 광전류 생성 능력을 유지하면서, 새로운 정공 전달체의 개발 및 계면 조절을 통한 개방 전압과 채움 상수의 개선을 통한 효율 증가 및 안정성에 관한 체계적 연구가 필요한 상황이다.

Human Serum Amyloid A-1 단백질 농도 분석을 위한 CdSe/ZnS 양자점 기반의 Lateral Flow Immunoassay 방법 개발 (Analysis of Human Serum Amyloid A-1 Concentrations Using a Lateral Flow Immunoassay with CdSe/ZnS Quantum Dots)

  • 아이딜파지리;고은서;이상혁;이혜진
    • 공업화학
    • /
    • 제30권4호
    • /
    • pp.429-434
    • /
    • 2019
  • 본 논문에서는 수용성의 CdSe/ZnS 양자점을 합성하고 이에 항체기능성을 도입하여 lateral flow immunoassay (LFIA) 플랫폼에 융합하여 폐암 질병진단에 활용 가능한 단백질 바이오마커[예: 인간 혈청 아밀로이드 A-1 (hSAA1)]의 농도 분석에 적용하고자 한다. 면역분석법 센서 스트립은 니트로셀룰로오즈 막에 테스트라인과 대조라인으로 각각 항hSAA1 단일클론항체(10G1)(anti-hSAA1)와 항chicken IgY (anti-chicken IgY)를 스프레이하여 제작하였다. 이와 함께, 유기상에서 합성된 CdSe/ZnS 양자점은 카르복실기로 변형된 알케인티올기를 이용한 리간드 교환방법으로 수용성으로 전환하였으며, 이에 타겟 단백질인 hSAA1에 특이적으로 결합 가능한 항체인 항hSAA1 단일클론항체(14F8)로 컨쥬게이션하여 형광검출용 입자[QDs-anti hSAA1 (14F8)]로 사용하였다. 제작된 LFIA 스트립 위에 순차적으로 다른 농도의 hSAA1과 QDs-anti hSAA1 (14F8)의 복합체를 흘려주면, 테스트라인에 anti hSAA1 (10G1)/hSAA1/QDs-anti hSAA1 (14F8) 샌드위치 복합체가 형성되어 양자점에 의한 발광신호가 검출됨을 측정하였다. 최적화된 측방흐름이 가능한 완충용액 조건에서 100 nM 농도의 hSAA1 단백질의 유무를 5 min 안에 눈으로 확인 가능하였다.

PbS as a sensitizer for Quantum Dot-sensitized Solar Cell

  • 김우석;용기중
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.379-379
    • /
    • 2011
  • 본 연구에서는 황화납(PbS)을 감응 물질로 하는 양자점 감응형 태양전지를 제작하고 효율을 측정해보았다. 기판에 진공증착을 통해 seed layer를 형성하고 수열합성법으로 산화아연(ZnO) 나노선 어레이를 기른 후 SILAR(Successive ionic layer adsorption and reaction)법으로 PbS 양자점을 합성하였고, 농도와 cycle에 따른 특성의 변화를 주사전자현미경(SEM), X-선 회절, UV-visible spectrometer를 통해 확인하였다. SILAR법을 통해 PbS가 ZnO 나노선 위에 film 형태로 균일하게 성장한 것을 확인할 수 있었고, 이렇게 합성한 물질을 직접 태양전지로 제작하여 그 효율을 측정하였다. 또한 co-sensitizer 물질로 CdS를 합성하여 두 물질의 감응 물질로서의 성능을 확인하였다. PbS는 비교적 작은 밴드갭을 가지며 양자 제한 효과가 커 밴드갭 조절이 용이하며 여러 종류의 태양전지에서 이용되고 있다. 이러한 PbS를 감응 물질로 하는 양자점 감응형 태양전지 제작을 통해 태양전지에의 적용 가능성을 살펴보고 그러기 위해 필요한 부분들을 모색해보았다.

  • PDF