• Title/Summary/Keyword: Cd tolerance

Search Result 124, Processing Time 0.031 seconds

Induction of Immunological Tolerance by Treatment of Ginseng Extract (인삼 엑기스의 경구 면역 관용에 관한 연구)

  • 배만종
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.2
    • /
    • pp.176-180
    • /
    • 1996
  • In order to develop new bioactive functions ginseng extract, it was studies whether the ginseng extracts on the induction of immunological tolerance In mice. Oral immunologic tolerance was induced by the secondary exposure of egg albumin + alum following gastrointestinal exposure nth egg albumin In mice, and the effect on anti EA antibody in blood, 7 cell subset in spleen were Investigated. The results obtained were as follows. EA group and EA + GE group was capable of conferring tolerance, contained a profound for 5 weeks experimental but saline group restricted to induce tolerance. GE group did not show the activity of tolerance by the first immunogens exposure, but induced the tolerance by the secondary exposure. And also spleen T cells, CD 8+ and CD 4+ were decreased. These results suggested that ginseng may affect the induction of immunological tolerance, which may be associated proliferative response of CD 4+ and CD 8+ in splenocyte.

  • PDF

Improvement of cadmium tolerance and accumulation of Phragmites spp. Tabarka by ethyl methane sulfonate mutagenesis

  • Kim, Young-Nam;Kim, Jiseong;Lee, Jeongeun;Kim, Sujung;Lee, Keum-Ah;Kim, Sun-Hyung
    • Journal of Plant Biotechnology
    • /
    • v.47 no.4
    • /
    • pp.324-329
    • /
    • 2020
  • Reed (Phragmites spp.) is a rhizomatous plant of the Poaceae family and is known as high tolerant plant to heavy metal contaminants. This plant is widely recognized as a Cd root-accumulator, but improved heavy metal tolerance and uptake capacity are still required for phytoremediation efficiency. To enhance capacity of hyperaccumulator plants, ethyl methane sulfonate (EMS) as chemical mutagen has been introduced and applied to remediation approaches. This study aimed to select EMS-mutagenized reeds representing high Cd resistance and large biomass and to investigate their ability of Cd accumulation. After 6 months cultivation of M2 mutant reeds under Cd stress conditions (up to 1,500 µM), we discovered seven mutant individuals that showed good performances like survivorship, vitality, and high accumulation of Cd, particularly in their roots. Compared to wild type (WT) reeds as control, on average, dry weight of mutant type (MT) reeds was larger by 2 and 1.5 times in roots and shoots, respectively. In addition, these mutant plants accumulated 6 times more Cd, mostly in the roots. In particular, MT8 reeds showed the greatest ability to accumulate Cd. These results suggest that EMS mutagenesis could generate hyperaccumulator plants with enhanced Cd tolerance and biomass, thereby contributing to improvement of phytoremediation efficiency in Cd-contaminated soil or wastewater. Further studies should focus on identifying Cd tolerance mechanisms of such EMS-mutagenized plants, developing techniques for its biomass production, and investigating the practical potential of the EMS mutants for phytoremediation.

Immune Regulatory Function of Dendritic Cells Expressing Indoleamine 2,3-Dioxygenase in Orally Tolerance to Type II Collagen-induced Animal Model (제2형 콜라겐 경구관용 유도 동물모델에서 수지상 세포의 Indoleamine 2,3-dioxygenase의 의존성 관절염 항원 특이 T세포 증식반응 제어 연구)

  • Park, Min-Jung;Min, So-Youn;Park, Kyoung-Su;Cho, Mi-La;CHo, Young-Gyu;Min, Jun-Ki;Yoon, Chong-Hyeon;Park, Sung-Hwa;Kim, Ho-Youn
    • IMMUNE NETWORK
    • /
    • v.5 no.4
    • /
    • pp.221-231
    • /
    • 2005
  • Background: Immune regulatory dendritic cells (DCs) play an important role in maintaining self-tolerance. Recent evidences demonstrate that DCs expressing indoleamine 2,3-dioxygenase (IDO), which is involved in tryptophan catabolism, play an important role in immunoregulation and tolerance and induce T cell apoptosis. This study was devised to examine the role of IDO in the oral tolerance induction in collagen-induced arthritis (CIA) mouse model. Methods: Beginning 2 weeks before immunization, CII was fed six times to DBA/1 mice and the effect on arthritis was assessed. In tolerized mice, $CD11c^+$ DCs were isolated and stimulated with CII, IFN-${\gamma}$, and LPS with or without IDO inhibitor, 1-methyl-DL-tryptophan (1-MT) and IDO expression by $CD11c^+$ DCs was analyzed using FACS and RT-PCR. The expression of IDO, MHC II, CD80, and CD86 by $CD11c^+$ DCs were examined using confocal microscopy. Regulatory effect of $CD11c^+$ DCs on Ag-specific T cell proliferative response to CII was examined by mixed lymphocyte reaction (MLR) with or without 1-MT. Results: The proportion of IDO-expressing $CD11c^+$ DCs was slightly higher in tolerized mice than in CIA mice and significantly increased after stimulation with CII, IFN-${\gamma}$, and LPS in an IDO-dependent manner. On confocal microscopic examination, the expression of IDO was higher and those of MHC II and CD86 were lower in CD11c + DCs from tolerized mice compared to those from CIA mice. On MLR, $CD11c^+$ DCs from tolerized mice inhibited T cell proliferative response to CII in an IDO-dependent manner. Conclusion: Enhanced IDO expression by $CD11c^+$ DCs from tolerized mice may contribute to the regulation of proliferative response of CII-reactive T cells and could be involved in the induction of oral tolerance to CII.

Expression of Catalase (CAT) and Ascorbate Peroxidase (APX) in MuSI Transgenic Tobacco under Cadmium Stress

  • Kim, Kye-Hoon;Kim, Young-Nam;Lim, Ga-Hee;Lee, Mi-Na;Jung, Yoon-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.53-57
    • /
    • 2011
  • The MuSI is known as a multiple stress resistant gene with several lines. A previous study using RT-PCR showed that the expression of MuSI gene in tobacco plant induced its tolerance to Cd stress. This study was conducted to examine the enhanced Cd tolerance of the MuSI transgenic tobacco plant through germination test and to understand the role of the involved antioxidant enzymes for the exhibited tolerance. Germination rate of MuSI transgenic tobacco was more than 10% higher than that of wild-type tobacco, and seedlings of MuSI transgenic tobacco grew up to 1.6 times larger and greener than seedlings of wild-type tobacco at 200 and 300 ${\mu}M$ Cd. From the third to the fifth day, CAT activities at 100 and 200 ${\mu}M$ Cd and APX activities at 100, 200 and 300 ${\mu}M$ Cd of MuSI transgenic tobacco were up to two times higher than those of wild-type tobacco. MuSI gene is shown to enhance the activities of antioxidant enzymes resulting in higher tolerance to oxidative stress compared with the control plant.

Oral Tolerance Increased the Proportion of CD8+ T Cells in Mouse Intestinal Lamina Propria

  • Cho, Kyung-Ah;Cha, Je-Eun;Woo, So-Youn
    • IMMUNE NETWORK
    • /
    • v.8 no.2
    • /
    • pp.46-52
    • /
    • 2008
  • Background: Oral tolerance is defined by the inhibition of immune responsiveness to a protein previously exposed via the oral route. Protein antigens exposed via the oral route can be absorbed through the mucosal surfaces of the gastrointestinal tract and can make physical contact with immune cells residing in the intestinal lamina propria (LP). However, the mechanisms of oral tolerance and immune regulation in the intestines currently remain to be clearly elucidated. Methods: In order to determine the effect of oral protein antigen intake (ovalbumin, OVA) on the intestinal LP, we assessed the expression profile of the T cell receptor and the co-receptors on the cells from the intestines of the tolerant and immune mouse groups. Results: We determined that the proportion of OVA-specific B cells and ${\gamma}{\delta}$ T cells had decreased, but the CD8${\alpha}{\beta}$ and D8${\alpha}{\alpha}$ T cells were increased in the LP from the tolerant group. The proportion of CD8+ T cells in the spleen did not evidence any significant differences between treatment groups. Conclusion: These results indicate that CD8+ T cells in the intestinal LP may perform a regulatory role following antigen challenge via the oral route.

A Study on the Cd Accumulation and Tolerance of Pisolithus Tinctorius in Vitro (배양기내(培養器內)에서 모래밭버섯균(菌)의 Cd 축적(蓄積)과 내성(耐性)에 관(關)한 연구(硏究))

  • Han, Sim Hee;Lee, Kyung Joon;Hyun, Jung Oh
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.1
    • /
    • pp.83-89
    • /
    • 2001
  • This study was conducted to test the Cd accumulation and Cd-tolerance of Pisotithus tinctorius(Pt). Pt was isolated from Pinus thunbergii forest in Muan, Chonnam Province in 1997. Pt was cultured on MMN medium supplemented with $CdSO_4{\cdot}5H_2O$ at the final concentration of 0, 0.2, 0.5, 2, and $10{\mu}g/m{\ell}$ for 40 days. Growth rate and tolerance index of the fungus were measured every week, while Cd concentration, superoxide dismutase(SOD), and glutathione reductase(GR) of the fungus were analyzed at the end of the culturing, Pt showed growth reduction in vitro at $2{\mu}g/m{\ell}$ Cd in the medium and almost stopped growth at $10{\mu}g/m{\ell}$ Cd. Tolerance index of Pt decreased with increasing Cd concentration. Cd concentration of Pt was the highest at $10{\mu}g/m{\ell}$ Cd. Activities of SOD did not show significant difference between Cd concentrations, but GR of Pt increased at $0.5{\mu}g/m{\ell}$ Cd, and decreased at $2{\mu}g/m{\ell}$ Cd. Consequently Pt could be called Cd accumulator with a tolerance mechanism to Cd. Their tolerance to Cd were expressed through the higher production of antioxidants such as GR. Pt may be used for revegetation and decontamination of soil polluted by heavy metals.

  • PDF

Characteristics of Cd Accumulation and Phytoremediation among Three Half-sib Families of Betula schmidtii (박달나무의 반형매 가계간 Cd Phytoremediation과 축적 특성)

  • Oh Chang Young;Lee Jae Cheon;Han Sim Hee;Kim Pan Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.3
    • /
    • pp.204-209
    • /
    • 2004
  • The main purpose of this study was to select a B. schmidtii population which has high cadmium tolerance and remediation and to determine the difference of cadmium uptake patterns among populations. One-year-old B. schmidtii seedlings were treated with 0, 0.4, 0.8mM CdSO$_4$. 3/8H$_2$O for two months. Cadmium concentrations in different positions of stem and cadmium concentrations and contents of leaves, stems and roots were analyzed. Also soil cadmium concentrations were analyzed. B. schmidtii was highest in root and lowest in shoot tip, showing a gradual decrease from root to shoot tip. The shoot to root Cd concentration ratios were over 1.26. It is concluded that B. schmidtii has good potential for phytoextraction as a shoot accumulator, which can be used for remediation of cadmium-contaminated areas. But tolerance differs between populations. Therefore B. schmidtii should be used as a means of phytoremediation after selection for Cd tolerance is performed.

A Study on the Cadmium Tolerance of Some Native Herb Plants (수종 야초류의 카드뮴 내성에 대한 연구)

  • Chang, Ju-Youn;Chang, Yun-Young;Bae, Bum-Han;Lee, In-Sook
    • The Korean Journal of Ecology
    • /
    • v.24 no.5
    • /
    • pp.309-313
    • /
    • 2001
  • This research was conducted to test cadmium tolerance by five speices of native herbs for screening cadmium tolerance plant. We examined germination rate, root and shoot growth rate of seedling, fresh biomass of native herbs exposed to cadmium solution for 14 days. Especially, germination rate of Abutilon avicennae and Amaranthus retroflexus was over 90% in all concentration, but germination rate of Aeschynomene indica, Echinochloa crus-galli var. oryzicola and Echinochla crus-galli var. frumentacea began to decrease when they exposed to 15 mgCdSO₄ /L. The higher the Cd concentration, the length of root, shoot grew lower. The fresh biomass of Echinochloa crus-galli var. oryzicola, Echinochla crus-galli var. frumentacea and Amaranthus retro-flexus were not so different from each control, but those of Abutilon avicennae and Aeschynomene indica began to decrese greatly when exposed to 60 mgCdSO₄ /L. EC/sub 50/(Effective Concentration 50%) of Abutilon avicennae, Aeschynomene indica and Amaranthus retroflexus was 44.6∼77.5 mgCdSO₄ /L for root growth, 38.6∼114 mgCdSO₄ /L for shoot growth, 60∼107.5 mgCdSO₄ /L for fresh biomass. Among the native herbs, sensitivity of cadmium ordered as root length > fresh biomass > shoot length. These results indicate that Abutilon avicennae is a tolerant species for cadmium.

  • PDF

Heterologous Expression of Fission Yeast Heavy Metal Transporter, SpHMT-1, Confer Tolerance to Cadmium in Cytosolic Phytochelatin-Deficient Saccharomyces cerevisiae (분열효모 SpHMT1을 세포질 파이토킬레이트를 생성하지 않는 효모에서 발현으로 인한 카드뮴에 대한 저항성 증가)

  • Lee, Sang-Man
    • Journal of Life Science
    • /
    • v.19 no.12
    • /
    • pp.1685-1689
    • /
    • 2009
  • Phytochelatins (PCs) are small polypeptides synthesized by PC synthase (PCS). They are present in various living organisms including plants, fission yeast, and some animals. The presumed function of PCs is the sequestration of cytosolic toxic heavy metals like cadmium (Cd) into the vacuoles via vacuolar membrane localized heavy metal tolerance factor 1 (HMT-1). HMT-1 was first identified in fission yeast (SpHMT-1), and later in Caenorhabdtis (CeHMT-1). Recently, its homolog has also been found in PC-deficient Drosophila (DmHMT-1), and this homolog has been shown to be involved in Cd detoxification, as confirmed by the heterologous expression of DmHMT-1 in fission yeast. Therefore, the dependence of HMT-1 on PC in Cd detoxification should be re-evaluated. I heterologously expressed SpHMT-1 in cytosolic PC-deficient yeast, Saccharomycea cerevisiae, to understand the dependence of HMT-1 on PC. Yeast cells expressing SpHMT-1 showed increased tolerance to Cd compared with control cells. This result indicates that SpHMT-1 is not strictly correlated with PC production on its function. Moreover, yeast cells expressing SpHMT-1 showed increased tolerance to exogenously applied glutathione (GSH) compared with control cells, and the tolerance to Cd was further increased by exogenously applied GSH, while tolerance in control cells was not. These results indicate that the function of SpHMT-1 in Cd detoxification does not depend on PCs only, and suggest that SpHMT-1 may sequester cytosolic GSH-Cd complexes into the vacuole.

Characterization of Heavy Metal Tolerant and Plant Growth-Promoting Rhizobacteria Isolated from Soil Contaminated with Heavy Metal and Diesel (중금속 및 디젤 오염 토양에서 분리한 중금속 내성 식물 생장 촉진 근권세균의 특성)

  • Lee, Soo Yeon;Lee, Yun-Yeong;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.413-424
    • /
    • 2021
  • In order to enhance rhizoremediation performance, which remediates contaminated soils using the interactions between plants and microorganisms in rhizosphere, it is required to develop effective microbial resources that simultaneously degrade contaminants and promote plant growth. In this study, heavy metal-resistant rhizobacteria, which had been cultivated in soils contaminated with heavy metals (copper, cadmium, and lead) and diesel were isolated from rhizospheres of maize and tall fescue. After that, the isolates were qualitatively evaluated for plant growth promoting (PGP) activities, heavy metal tolerance, and diesel degradability. As a result, six strains with heavy metal tolerance, PGP activities, and diesel degradability were isolated. Strains CuM5 and CdM2 were isolated from the rhizosphere soils of maize, and were identified as belonging to the genus Cupriavidus. From the rhizosphere soils of tall fescue, strains CuT6, CdT2, CdT5, and PbT3 were isolated and were identified as Fulvimonas soli, Cupriavidus sp., Novosphingobium sp., and Bacillus sp., respectively. Cupriavidus sp. CuM5 and CdM2 showed a low heavy metal tolerance and diesel degradability, but exhibited an excellent PGP ability. Among the six isolates, Cupriavidus sp. CdT2 and Bacillus sp. PbT3 showed the best diesel degradability. Additionally, Bacillus sp. PbT3 also exhibited excellent heavy metal tolerance and PGP abilities. These results indicate that the isolates can be used as promising microbial resources to promote plant growth and restore soils with contaminated heavy metals and diesel.