• Title/Summary/Keyword: Cavity shape

Search Result 437, Processing Time 0.026 seconds

A Numerical Analysis of Gravity and Free Surface Effects on a Two-Dimensional Supercavitating Flow (2차원 초공동 유동의 중력과 자유표면 효과에 대한 수치해석)

  • Kim, Hyoung-Tae;Lee, Hyun-Bae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.435-449
    • /
    • 2014
  • The effects of the gravity field and the free surface on the cavity shape and the drag are investigated through a numerical analysis for the steady supercavitating flow past a simple two-dimensional body underneath the free surface. The continuity and the RANS equations are numerically solved for an incompressible fluid using a $k-{\epsilon}$ turbulence model and a mixture fluid model has been applied for calculating the multiphase flow of air, water and vapor using the method of volume of fluid and the Schnerr-Sauer cavitation model. Numerical solutions have been obtained for the supercavitating flow about a two-dimensional $30^{\circ}$ wedge in wide range of depths of submergence and inflow velocities. The results are presented for the cavity shape, especially the length and the width, and the drag of the wedge in comparison with those of the case for the infinite fluid flow neglecting the gravity and the free surface. The influences of the gravity field and the free surface on the aforementioned quantities are discussed. The length and the width of the supercavity are reduced and the centerline of the cavity rises toward the free surface due to the effects of the gravity field and the free surface. The drag coefficient of the wedge, however, is about the same except for shallow depths of submergence. As the supercavitating wedge is approaching very close to the free surface, it is found the length and the width of a cavity are shorten even though the cavitation number is reduced. Also the present result suggests that, under the influence of the gravity field and the free surface, the length of the supercavity for a certain cavitation number varies and moreover is proportional to the inverse of the submergence depth Froude number.

Characteristics of Lime-cavities and Survey Design for Bridge Foundation in the Karst Area (석회 공동의 특성과 카르스트 지역 내 교량 기초를 위한 조사 설계)

  • 윤운상;김학수;최원석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.399-406
    • /
    • 1999
  • Recently, the construction of the several highway bridges in the karst area have encountered severe problems associated with cavities and sinkholes. To solve this problems, it is important to understand the distribution characteristics of cavities in the construction site on limestone area. This paper briefly describes the different types, the distribution control factors and the infill sediment types of lime-cavities in the study area, bridge site in the karst area and propose the effective method of survey design. Cavity system may be divided into two main groups, 1)'slot and cave system'and 2)'sinkhole and cave system'. And the shape, the size and the distribution pattern of cavity are controlled by three main factors - rock type, geological structure and ground water condition. Additionally, infill sediment may be considered as one of the important design factors for foundation design and divided into four types by sediment properties. There are geophysical thechnics and geologic survey and drilling test, etc. by the survey method to interpretate characteristics of cavity system, and this methods are optimally designed at the site investigation stage.

  • PDF

A Experimental Study on a Pressure Variation in the Cavity of Hydrogen Diaphragm Compressor (다이아프램식 수소압축기의 캐비티 내 압력특성 변화에 관한 실험적 연구)

  • Shin, Young-Il;Park, Hyun-Woo;Lee, Young-Jun;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.769-772
    • /
    • 2009
  • Diaphragm compressors are used for a hydrogen compression because it can achieve high gas pressure with high purity. But diaphragm's lifetime may depend on the shape of the cavity and deflection from fluctuation the pressure change, which is necessary to monitored. In this study, the gas and hydraulic oil pressure in the cavity were measured as piston speed varies for diaphragm compressor. The results show pressure change quantities were reduced and maximum pressure points are delayed as the piston moves faster. And the hydraulic pressure were elevated as gas pressure elevated. And the compression period was more faster than expansion period.

  • PDF

A Numerical Analysis of an Unsteady Flow in a Cavity Using an Ekman Pumping Model (에크만 분출 모델을 이용한 캐버티 내의 비정상 유동특성에 관한 수치해석)

  • 서용권;박춘근;최윤환;문종춘
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.102-110
    • /
    • 1997
  • A two dimensional shallow-water flow around a cavity driven by a sinusoidally oscillating external flow was studied numerically with an Ekman pumping model. A container model of "T" shape was constructed in the numerical computation for comparison with the experimental observation. The material transport in the external region is in good agreement with the experimentally recorded particle trajectories. It turns out that two large coherent vortices situated in the exterior region of the cavity are responsible for clockwise and counterclockwise drift motions, in large scale, of particles. The Ekman pumping model suggested in this study was found to be satisfactory.isfactory.

  • PDF

A Study on Utility of Magnetic Resonance Imaging for Female Pelvic Cavity using Enteral MRI Contrast Media (Enteral MRI contrast media를 이용한 여성골반 자기공명영상의 유용성)

  • Kim, Ham-Gyum
    • Journal of radiological science and technology
    • /
    • v.20 no.1
    • /
    • pp.29-34
    • /
    • 1997
  • For radiological test in soft tissue or neighboring part with same signal intensity, proper test method and equipment shall be selected as needed. In case of female pelvic cavity, ultrasonography or computed tomography alternatively used, but MRI can be more usefully applied to design treatment method or operation plan by improving the diagnostic accuracy and careful observation of lesion characteristics. Magnetic Resonance Imaging using recently developed Enteral MRI contrast media can acquire more diagnostic information than using only intravenous contrast media. Thus this study attempted to examine the utility of anatomic structure and diagnostic acquisition by imaging the female pelvic cavity using Enteral MRI contrast media. As a result of analyzing magnetic resonance Imaging after administering Enteral MRI contrast media to pelvic cavity suspect patients, more diagnostic information media could be acquired than only using Intravenous contrast. Expecially, in the diagnosis of lesion position, shape, distinction from neighboring tissues it is thought that external Enteral MRI contrast media should be used.

  • PDF

Robust Deformation of Cavity Objects using Shape-Preserving Spring (형태유지 스프링을 이용한 cavity 객체의 안정적 형태 변형)

  • 최유주;김명희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.727-729
    • /
    • 2003
  • 본 논문에서는 외부의 힘에 의한 cavity 변형 객체의 안정적 형태 변형을 표현하기 위하여 형태유지 스프링을 이용한 변형 모델링 기법을 제안한다. 일반적으로 위나 풍선과 같은 cavity 변형객체는 전체 구성 노드의 수를 줄이기 위하여 표면 메쉬 구조로 모델링된다. 이 경우. 표면의 인접 노드만이 감쇠(damping) 스프링으로 연결되고, 모델의 체적정보의 부재로 인하여, 외부 힘이 일정시간 동안 지속적으로 주어지는 경우, 객체의 형태변형이 왜곡되고. 외부 힘이 제거된 후에도 초기 형태로의 복원이 불가능해진다. 본 논문에서는 전형적인 표면 메쉬 기반 변형 모델링 기법을 개선하기 위하여 형태 유지 스프링을 이용하여 체적 정보를 추가함으로써, 변형의 불안정성을 제거하고, 안정적인 초기형태로의 복원이 이루어지도록 하였다.

  • PDF

Stress field around axisymmetric partially supported cavities in elastic continuum-analytical solutions

  • Lukic, D.;Prokic, A.;Anagnosti, P.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.4
    • /
    • pp.409-430
    • /
    • 2010
  • The present paper will be concerned to the investigation of the stress-strain field around the cavity that is loaded or partially loaded at the inner surface by the rotationally symmetric loading. The cavity of the spherical, cylindrical or elliptical shape is situated in a stressed elastic continuum, subjected to the gravitation field. As the contribution to the similar investigations, the paper introduces the new function of loading in the form of the infinite sine series. Besides, in this paper the solution of stresses around an oblong ellipsoid cavity, has been obtained using appropriate curvilinear elliptical coordinates. This analytical approach avoids the solutions of the same problem that lead to expressions that contain rather complex integrations. Thus the presented solutions provide the applicable and explicit expressions for stresses and strains developed in infinite series with easily determinable coefficients by the use of contemporary mathematical packages. The numerical examples are also included to confirm the convergence of the obtained solutions.

Studies on Ventilation Control for a Ventilated Supercavitating Vehicle (분사형 초공동 수중운동체의 가스 분사량 제어 연구)

  • Kim, Seonhong;Kim, Nakwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.3
    • /
    • pp.206-221
    • /
    • 2015
  • Supercavitation is a modern technique which can be used to surround an underwater vehicle with a bubble in order to reduce the resistance of the vehicle. When the vehicle is at low speed in the deep sea, the cavitation number is relatively big and it is difficult to generate a cavity large enough to envelope the vehicle. In this condition, the artificial cavity, called ventilated cavity, can be used to solve this problem by supplying gas into the cavity and can maintain supercavitating condition. In this paper, a relationship between the ventilation gas supply rate and the cavity shape is determined. Based on the relationship a ventilation rate control is developed to maintain the supercavitating state. The performance of the ventilation control is verified with a depth change control. In addition, dynamics modeling for the supercavitating vehicle is performed by defining forces and moments acting on the vehicle body in contact with water. Simulation results show that the ventilation control can maintain the supercavity of an underwater vehicle at low speed in the deep sea.

SIMULATION OF LID DRIVEN CAVITY FLOW WITH DIFFERENT ASPECT RATIOS BY MULTI-RELAXATION-TIME LATTICE BOLTZMANN METHOD (다중완화시간 격자 볼츠만기법을 이용한 다양한 종횡비의 리드드리븐 공동유동 수치해석연구)

  • Huang, Tingting;Song, Juhun;Lim, Hee-Chang
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.42-51
    • /
    • 2020
  • This study performs a numerical simulation of lid driven rectangular cavity flow with different aspect ratios of k = 0.5 to 4 under Reynolds 100, 1,000, 10,000 by using multi-relaxation time (MRT) Lattice Boltzmann Method (LBM). In order to achieve better convergence, well-posed boundary conditions in the domain should be defined such as no-slip condition on side and bottom solid wall surfaces and uniform horizontal velocity on the top of the cavity. This study focuses on the flow inside different shape of rectangular cavity with the aim to observe the effect of the Reynolds number and aspect ratio on the flow characteristics and primary/secondary vortex formation. In order to validate the study, the results have been compared with existing works. The result shows that the Reynolds number and the aspect ratio both has substantial effects on the flow inside the lid-driven rectangular cavity.

Fabrication Tolerance of InGaAsP/InP-Air-Aperture Micropillar Cavities as 1.55-㎛ Quantum Dot Single-Photon Sources

  • Huang, Shuai;Xie, Xiumin;Xu, Qiang;Zhao, Xinhua;Deng, Guangwei;Zhou, Qiang;Wang, You;Song, Hai-Zhi
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.509-515
    • /
    • 2020
  • A practical single photon source for fiber-based quantum information processing is still lacking. As a possible 1.55-㎛ quantum-dot single photon source, an InGaAsP/InP-air-aperture micropillar cavity is investigated in terms of fabrication tolerance. By properly modeling the processing uncertainty in layer thickness, layer diameter, surface roughness and the cavity shape distortion, the fabrication imperfection effects on the cavity quality are simulated using a finite-difference time-domain method. It turns out that, the cavity quality is not significantly changing with the processing precision, indicating the robustness against the imperfection of the fabrication processing. Under thickness error of ±2 nm, diameter uncertainty of ±2%, surface roughness of ±2.5 nm, and sidewall inclination of 0.5°, which are all readily available in current material and device fabrication techniques, the cavity quality remains good enough to form highly efficient and coherent 1.55-㎛ single photon sources. It is thus implied that a quantum dot contained InGaAsP/InP-air-aperture micropillar cavity is prospectively a practical candidate for single photon sources applied in a fiber-based quantum information network.