• 제목/요약/키워드: Cavity sensor

검색결과 146건 처리시간 0.031초

광섬유 패치코드를 이용한 Fabry-Perot 간섭계 온도센서 (Temperature Sensor Based on Fabry-Perot Interferometer Using a Fiber Optic Patch Cord)

  • 김주하;정은주;김명진;황성환;이우진;김계원;안종배;최은서;노병섭
    • 센서학회지
    • /
    • 제23권2호
    • /
    • pp.110-113
    • /
    • 2014
  • In this paper, we propose and demonstrate a Fabry-Perot interferometer (FPI) optical fiber tip sensor fabricated by a blade-sawing technique using a fiber optic patch cord for high-resolution temperature measurement. The sensor head consists of a short air FP cavity near the tip of a single-mode fiber patch cord tip. The temperature which we can measure is determined through a phase variation of the interference fringes in the reflective spectrum of the sensor. The fiber optic FPI sensor in this work can monitor the environmental temperature very accurately from 40 to $120^{\circ}C$. As a result, the temperature sensitivity is obtained as $38.2pm/^{\circ}C$.

사냑형 간섭계 광섬유 센서를 이용한 변압기유 내에서의 외부 음향 주파수 모니터링 (Applied Sound Frequency Monitoring in the Transformer Oil Using Fiber Optic Sagnac Interferometer)

  • 이종길;이승홍
    • 한국음향학회지
    • /
    • 제34권4호
    • /
    • pp.288-294
    • /
    • 2015
  • 광섬유 사냑 간섭계는 음향 및 진동과 같은 물리적 변화량을 탐지하는 센서로 잘 개발되어 있다. 본 논문에서는 변압기유가 채워진 원통형 캐비티에 음압이 발생되었을 때 한 개의 루프내에 설치된 광섬유 배열 센서를 이용하여 음향을 탐지하였다. 서로 다른 외부 음향 주파수 $f_1$$f_2$를 피에조 재료를 이용하여 발생시키고 주파수는 5 kHz에서 90 kHz까지로 선정하였다. 실험 결과 광섬유 센서는 하모닉 성분인 $f_1$, $f_2$, $2f_1$, $2f_2$, ${\mid}f_1-f_2{\mid}$, ${\mid}f_1+f_2{\mid}$의 주파수를 탐지하였다. 제안된 광섬유 센서 배열은 변압기 내의 부분 방전으로 인한 음압과 진동과 같은 물리량을 모니터링 하는데 적용할 수 있을 것으로 판단된다.

Development of 3D-based On-Machine Measurement Operating System

  • Yoon Gil-Sang;Heo Young-Moo;Kim Gun-Hee;Cho Myeong-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권3호
    • /
    • pp.45-50
    • /
    • 2005
  • This paper proposed an efficient manufacturing system using the OMM (on-machine measurement) system. The OMM system is software-based 3D modeler for inspection on machine, and it is interfaced with machine tools via RS232C. The software is composed of two inspection modules; one is touch probe operating module, and the other is laser displacement sensor operating module. The module for touch probe needs the inspection feature extracted from CAD data. The touch probe moves to workpiece by three operating modes as follows: manual, general and automatic mode. The operating module of the laser displacement sensor is used to inspect profiles and very small holes. An advantage of this inspection method is the ability to execute on-line inspection during machining or afterward. The efficiency of proposed system which can predict and define the machining errors of each process was verified, so the developed system was applied to inspect a mold-base (cavity, core).

A Vapor Sensor Based on a Porous Silicon Microcavity for the Determination of Solvent Solutions

  • Bui, Huy;Nguyen, Thuy Van;Nguyen, The Anh;Pham, Thanh Binh;Dang, Quoc Trung;Do, Thuy Chi;Ngo, Quang Minh;Coisson, Roberto;Pham, Van Hoi
    • Journal of the Optical Society of Korea
    • /
    • 제18권4호
    • /
    • pp.301-306
    • /
    • 2014
  • A porous silicon microcavity (PSMC) sensor has been made for vapors of solvent solutions, and a method has been developed in order to obtain simultaneous determination of two volatile substances with different concentrations. In our work, the temperature of the solution and the velocity of the air stream flowing through the solution have been used to control the response of the sensor for ethanol and acetone solutions. We study the dependence of the cavity-resonant wavelength shift on solvent concentration, velocity of the airflow and solution temperature. The wavelength shift depends linearly on concentration and increases with solution temperature and velocity of the airflow. The dependence of the wavelength shift on the solution temperature in the measurement contains properties of the temperature dependence of the solvent vapor pressure, which characterizes each solvent. As a result, the dependence of the wavelength shift on the solution temperature discriminates between solutions of ethanol and acetone with different concentrations. This suggests a possibility for the simultaneous determination of the volatile substances and their concentrations.

자발 구동형 종이 펌프를 이용한 종이 전기화학 센서 (Paper-based Electrochemical Sensor Using a Self-operated Paper Pump)

  • ;김치관;;김용신
    • 센서학회지
    • /
    • 제33권3호
    • /
    • pp.158-164
    • /
    • 2024
  • We developed a self-operated paper pump that can maintain a nearly constant flow rate of an aqueous solution along a paper strip channel in paper-based analytical devices (PADs). The quasi-stationary flow rate was controlled by increasing the crosssectional channel area (capillary force) using a fan-shaped absorption pad coupled with a paper strip channel. The flow rate is regulated by varying the fan angle of the circular absorbing pad. Furthermore, the flow rate can be increased by furnishing a hollow cavity at the center of a conventional paper strip channel. The rate was regulated by varying the length of the hollow paper channel in the flow rate range of 5.1-26.4 mm/min. As a preliminary work, a paper-pump-coupled PAD was fabricated, and its CV detection capability was evaluated for the redox reaction of Fe(CN)6+4/+3. The combination of a paper pump with a PAD resulted in an ideal CV curve with a higher limiting current and faster response time. These results are interpreted well by the Levich equation, which suggests that the paper pump is a very useful component in paper-based sensors.

A bond graph approach to energy efficiency analysis of a self-powered wireless pressure sensor

  • Cui, Yong;Gao, Robert X.;Yang, Dengfeng;Kazmer, David O.
    • Smart Structures and Systems
    • /
    • 제3권1호
    • /
    • pp.1-22
    • /
    • 2007
  • The energy efficiency of a self-powered wireless sensing system for pressure monitoring in injection molding is analyzed using Bond graph models. The sensing system, located within the mold cavity, consists of an energy converter, an energy modulator, and a ultrasonic signal transmitter. Pressure variation in the mold cavity is extracted by the energy converter and transmitted through the mold steel to a signal receiver located outside of the mold, in the form of ultrasound pulse trains. Through Bond graph models, the energy efficiency of the sensing system is characterized as a function of the configuration of a piezoceramic stack within the energy converter, the pulsing cycle of the energy modulator, and the thicknesses of the various layers that make up the ultrasonic signal transmitter. The obtained energy models are subsequently utilized to identify the minimum level of signal intensity required to ensure successful detection of the ultrasound pulse trains by the signal receiver. The Bond graph models established have shown to be useful in optimizing the design of the various constituent components within the sensing system to achieve high energy conversion efficiency under a compact size, which are critical to successful embedment within the mold structure.

3-5 $\mu m$ 적외선 흡수체를 가진 전면 건식 식각된 서모파일과 NDIR $CO_2$ 가스 센서의 응용 (A Front-side Dry-Etched Thermopile Detector with 3-5 $\mu m$ Infrared Absorber and Its Application to Novel NDIR $CO_2$ Gas Sensors)

  • 유금표;김시동;최우석;;민남기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1470-1471
    • /
    • 2008
  • We present a front-side micromachined thermopile with high sensitivity in the 3-5${\mu}m$ window, and discuss its application to a novel non-dispersive infrared (NDIR) $CO_2$ gas sensor with a light source emitting collimated light. The micromachined thermopile shows a measured sensitivity of 30 mV/W and a $D^*$ of $0.3{\times}10^8cm^{\surd}Hz/W$. Using this newly fabricated thermopile, we also have successfully developed a small, sensitive NDIR $CO_2$ detector module for accurate air quality monitoring systems in energy-saving building and automotive applications. The novel sample cavity comprising specular reflectors around the light bulb is configured to uniformly emit collimated light into the entrance aperture of the cavity in order to enhance the sensitivity of NDIR $CO_2$ detector.

  • PDF

고출력 엔진에서 연소실 내의 노킹음에 의한 공진현상 분석 (Analysis of Cavity Resonances caused by Knocking in Chamber of High Power Engine)

  • 이두곤;장석형;이종호;박경석;전계석
    • 한국음향학회지
    • /
    • 제11권4호
    • /
    • pp.31-35
    • /
    • 1992
  • 고출력 가솔린 엔진에서 연소실 내의 급격한 압력 변화에 의해 노킹음이 발생되는데 이로 인하여 공진현상이 일어난다. 일반적으로 이러한 공진음은 5KHz 이상에서 발생되고 이 현상에 대한 고출력 가솔린 엔진의 노킹제어 시스템을 설계하는데 매우 중요하다. 본 논문에서는 고출력으로 설계된 엔진에서 사용되는 노킹 제어시스템을 설게하기 위해 연소실에서 발생되는 노킹현상을 이론적으로 분석하여 노킹음의 모드별 공진 주파수를 예측하였다. 또한 스쿠프 알파 엔진과 독일 보슈사의 비공진형 노킹센서를 시용하여 실험을 수행하였고, 그 결과 이론과 실험이 잘 일치함을 알 수 있었다.

  • PDF

Nano-porous Silicon Microcavity Sensors for Determination of Organic Fuel Mixtures

  • Pham, Van Hoi;Bui, Huy;Hoang, Le Ha;Nguyen, Thuy Van;Nguyen, The Anh;Pham, Thanh Son;Ngo, Quang Minh
    • Journal of the Optical Society of Korea
    • /
    • 제17권5호
    • /
    • pp.423-427
    • /
    • 2013
  • We present the preparation and characteristics of liquid-phase sensors based on nano-porous silicon multilayer structures for determination of organic content in gasoline. The principle of the sensor is a determination of the cavity-resonant wavelength shift caused by refractive index change of the nano-porous silicon multilayer cavity due to the interaction with liquids. We use the transfer matrix method (TMM) for the design and prediction of characteristics of microcavity sensors based on nano-porous silicon multilayer structures. The preparation process of the nano-porous silicon microcavity is based on electrochemical etching of single-crystal silicon substrates, which can exactly control the porosity and thickness of the porous silicon layers. The basic characteristics of sensors obtained by experimental measurements of the different liquids with known refractive indices are in good agreement with simulation calculations. The reversibility of liquid-phase sensors is confirmed by fast complete evaporation of organic solvents using a low vacuum pump. The nano-porous silicon microcavity sensors can be used to determine different kinds of organic fuel mixtures such as bio-fuel (E5), A92 added ethanol and methanol of different concentrations up to 15%.

가스누출 감지용 실리콘 압저항형 절대압센서의 제조 및 온도보상 (Fabrication and Temperature Compensation of Silicon Piezoresistive Absolute Pressure Sensor for Gas Leakage Alarm System)

  • 손승현;김우정;최시영
    • 센서학회지
    • /
    • 제7권3호
    • /
    • pp.171-178
    • /
    • 1998
  • SDB 웨이퍼를 이용하여 실리콘 압저항형 절대압센서를 제조하고 이를 가스누출 감지시스템에 응용하였다. 이 경우 센서는 $0{\sim}600\;mmH_{2}O$, $0{\sim}100^{\circ}C$의 압력, 온도범위에서 정상적으로 동작하여야 하고 다이아프램이 파괴되었을 때 가스가 소자 외부로 누출되어서는 안된다. 따라서 다이아프램 내의 공극을 유리(Pyrex7740)와 진공중($10^{-4}$ torr)에서 양극 접합을 행하였다. 제조된 센서는 압력에 대하여 우수한 선형특성을 보였고, 압력감도는 대기압이상 $0{\sim}600\;mmH_{2}O$의 압력범위에서 $4.06{\mu}V/VmmH_{2}O$ 이었다. 온도보상 일체화 조건을 조사하기 위해 Al 박막저항을 제조하여 온도보상을 행하였는데 오프셋의 온도 drift는 80 %이상, 감도의 온도의존성은 95 %이상 보강 효과를 얻었다. 또한 다이오드(PXIN4001)를 이용한 온도보상시 오프셋의 온도 drift는 98 %이상, 감도의 온도의존성은 90%이상 보상 효과를 나타내었다.

  • PDF