• Title/Summary/Keyword: Cavity flow

Search Result 900, Processing Time 0.032 seconds

A Study on the Characteristics of an Air Cavity Attached Under a Flat Plate (평판에 형성된 공기공동 특성에 관한 연구)

  • Kim, Jong-Hyun;Oh, Jae-Young;Seo, Dae-Won;Lee, Seung-Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.396-403
    • /
    • 2011
  • The concept of an air lubrication has long been an object of attention since it can be utilized to reduce the frictional resistance, and what is more, it is eco-friendly. The present study examines the basic characteristics of an air cavity with intention of applying the air lubrication technology to the reduction of the resistance of a ship without excessive power increment. For the purpose, an air cavity was created at the bottom of a flat plate by injecting air behind a backward step and the hydrodynamic properties of the air cavity and the surrounding flow has been investigated experimentally and numerically. The influence of the step height and the air flow rate have been more carefully studied since they are presumed to be the main parameters affecting the characteristics of an air cavity. The results indicates that the shapes of the air cavities attached on the flat plate become "U" or "V" type depending on the incoming flow velocity and air flow rate. The study also confirms that the length of the air cavity increases with increase in air flow rate but there is a certain critical limit in the flow rate above which increase in the air cavity length is no more evident.

Inducer Design to Avoid Cavitation Instabilities

  • Kang, Dong-Hyuk;Watanabe, Toshifumi;Yonezawa, Koichi;Horiguchi, Hironori;Kawata, Yutaka;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.439-448
    • /
    • 2009
  • Three inducers were designed to avoid cavitation instabilities. This was accomplished by avoiding the interaction of tip cavity with the leading edge of the next blade. The first one was designed with extremely larger leading edge sweep, the second and third ones were designed with smaller incidence angle by reducing the inlet blade angle or increasing the design flow rate, respectively. The inducer with larger design flow rate has larger outlet blade angle to obtain sufficient pressure rise. The inducer with larger sweep could suppress the cavitation instabilities in higher flow rates more than 95% of design flow coefficient, owing to weaker tip leakage vortex cavity with stronger disturbance by backflow vortices. The inducer with larger outlet blade angle could avoid the cavitation instabilities at higher flow rates, owing to the extension of the tip cavity along the suction surface of the blade. The inducer with smaller inlet blade angle could avoid the cavitation instabilities at higher flow rates, owing to the occurrence of the cavity first in the blade passage and its extension upstream. The cavity shape and suction performance were reasonably simulated by three dimensional CFD computations under the steady cavitating condition, except for the backflow vortex cavity. The difference in the growth of cavity for each inducer is explained from the difference of the pressure distribution on the suction side of the blades.

The Spray Behavior Analysis and Space Distribution of Mixture in Transient Jet Impinging on Piston Cavity (비정상 충돌 분류의 Cavity형상에 따른 공간 농도 분포 및 거동해석)

  • Lee, S.S.;Kim, K.M.;Kim, B.G.;Chang, S.S.;Ha, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.1 no.2
    • /
    • pp.16-23
    • /
    • 1996
  • In case of a high-speed D.I. diesel engine. the injected fuel spray is unavoidable that the impinging on the wall of piston cavity and in this case the geometry of piston cavity has a great influence on the atomization structure and air flow fields. In the field of combustion and in many other spray applications, there are clear evidence of correlation between spray structure and emission of pollutants. Ordinary, the combustion chamber of driving engine have unsteady turbulent flow be attendant on such as the change of temperature, velocity and pressure. So the analysis of spray behavior is difficult. In this study, a single spray was impinged on each cavity wall at indicated angle in a quiescent atmosphere at room temperature and pressure, as being the simplest case, and 3 types of piston cavity such as Dish, Toroidal and Re-entrant type was tested for analyzing the influence of cavity geometry. And hot wire probe was used for analyze non-steady flow characteristics of impinging spray, and to investigate the behavior of spray, the aspects of concentration c(t), standard deviation $\sigma(t)$ and variation factor (v.f.) was measured with the lapse of time.

  • PDF

Investigation of Transonic and Supersonic Flows over an Open Cavity Mounted on Curved Wall (II) - Unsteady Flow Characteristics - (곡면상에 설치된 열린 공동을 지나는 천음속/초음속 유동에 관한 연구 (II) - 비정상 유동의 특성 -)

  • Ye, A Ran;Das, Rarjarshi;Kim, Huey Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.477-483
    • /
    • 2015
  • Investigations into cavity flows have been conducted for noise and vibration problems that arise in cavity systems. Cavity systems have been applied in engineering devices and have undergone rapid development in the aerospace industry. Meanwhile, to the author's best knowledge, the cavity on a curved wall has been seldom studied. The present work is conducted to study the flow physics of a cavity mounted on a curved wall. Numerical analysis is performed to investigate the cavity flow. Two variables of sub- and supersonic cavity flows were considered: the radius of curvature of the curved wall (L/R) and the inlet Mach number. The results show that the uniform vortex generated by the cavity flow on the curved wall stabilize the pressure fluctuation as time passes. As the inlet Mach number increases, the pressure fluctuation amplitude increases. The results obtained from the curved wall are compared with those from a straight wall using Rossiter's formula. The Strouhal number of the curved wall is lower than that of the straight wall. Lower Strouhal numbers have been obtained in the present computational fluid dynamics (CFD) results than in the theoretical results using Rossiter's formula.

A Novel Runner Design for Flow Balance of Cavities in Multi-Cavity Injection Molding (다수 빼기 사출성형에서 캐비티간 충전균형을 위한 새로운 런너의 설계)

  • Park, Seo-Ri;Kim, Ji-Hyun;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.561-568
    • /
    • 2009
  • Small injection molded articles are generally molded by multi-cavity injection molding. The most important thing in multi-cavity molding is flow imbalance among the cavities because it affects the physical property and the quality of products. The cavity filling balance can be achieved by flow balance in the runner through the thermal balance. In this study, novel screw type runner or helical type runner has been developed for the flow balance in the runner and performed experiment and computer simulation. Flow balance has been observed using various screw type runners for several resins such as amorphous and crystalline polymers including low and high viscosities grades. Flow balance experiments have been performed for various injection speeds since the flow balance can be affected by injection speed among the injection conditions. Experimental results have been compared with computational results and they showed good agreement. The cavity filling balance can be achieved by the screw runner where the temperature distribution is uniform through the circulation flow along the screw channel in the screw runner. It has been verified that the novel screw runner is very effective device in flow balance in the multi-cavity injection molding. cavity filling imbalance, multi-cavity injection molding, runner design, screw runner, thermal balance.

LES for unsteady flow past n cavity (공동을 지나는 비정상 유동에 대한 LES 해석)

  • Lim Jongsoo;shin Dongshin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.791-794
    • /
    • 2002
  • Cavity is inevitably included in automobile vehicle configuration. The complex unsteady flow and sound waves generated by the cavity are very important issues because of the involved fluid dynamics and the practical importance in the field of aerodynamics. The LES method used is a conventional one with Smagorinsky eddy-viscosity model and the computational grid is small enough to be handled by workstation-level computers. LES can successfully simulate of cavity noise analysis.

  • PDF

NUMERICAL VISUALIZATION OF THE MIXING PATTERN IN A LID-DRIVEN-CAVITY FLOW (드리븐 캐버티 내의 혼합현상에 대한 수치적 가시화)

  • Suh Y.K.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.37-45
    • /
    • 2006
  • In this study we present the numerical methods that can be used in visualization of the flow and mixing patterns in a cavity driven by a top lid. The basic flow field within the cavity has been obtained by using a simple numerical scheme. The invariant manifold also called unstable manifold was then attained to represent the mixing pattern within the cavity. It was shown that care must be taken in calculating the trajectories of the fluid particles especially near corners of the cavity. The numerical results show excellent agreement with those obtained experimentally by other research group.

A Study on The Optimum Design of Multi-Cavity Molding Parts Using The Runner Balance Algorithm (런너밸런스 알고리즘을 이용한 멀티캐비티 최적성형에 관한 연구)

  • 박균명;김청균
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.41-46
    • /
    • 2003
  • The objective of this paper is to present a methodology for automatically balancing multi-cavity injection molds with the aid of flow simulation. After the runner and cavity layout has been designed, the methodology adjusts runner and gate sizes iteratively based on the outputs of flow analysis. This methodology also ensures that the runner sizes in the final design are machinable. To illustrate this methodology, an example is used wherein a 3-cavity mold is modeled and filling of all the cavities at the same time is achieved. Based on the proposed methodology, a multicavity mold with identical cavities is balanced to minimize overall unfilled volume among various cavities at discrete time steps of the molding cycle. The example indicates that the described methodology can be used effectively to balance runner systems for multi-cavity molds.

Experimental Study on Supersonic Combustor using Inclined Fuel Injection with the Cavity, Part 1: OH-PLIF Measurement (공동 상류 경사 분사를 이용한 초음속 연소기의 실험적 연구, Part 1 : OH-PLIF 측정)

  • Jeong, Eun-Ju;Jeung, In-Seuck;O'Byrne, Sean;Houwing, A.F.P
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.1
    • /
    • pp.11-20
    • /
    • 2007
  • The supersonic combustion experiments are carried out using T3 free-piston shock tunnel. Different shock tube fill pressures have various inflow conditions. $15^{\circ}$ inclined hydrogen fuel injection is located before the cavity. Oblique shock is generated from the cavity and reflects off the top and bottom wall. For non-reacting flow, fuel makes the shear layer thicker above the cavity therefore, the shock is generated just before the trailing edge. This research has self-ignition in the combustor. For reacting flow, as the equivalence ratio increases, flame starts to generate near the injector or occur in the recirculation zone before the injector. High fuel injection sustains the jet shape in the cross flow and air can mix with fuel along the shear layer. Therefore, two flame layers find above the cavity for high equivalence ratio.

  • PDF

Control of the Unsteadiness of Supersonic Cavity Flows (불안정한 초음속 공동유동의 제어)

  • Kang, Min-Sung;Shin, Choon-Sik;Kwon, Joon-Kyeong;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2782-2787
    • /
    • 2008
  • The subcavity passive control technique is used in present study. Cavity-induced pressure oscillation has been investigated numerically for a supersonic three-dimensional flow over rectangular cavities at Mach number 1.83 at the cavity entrance. Time dependent supersonic turbulent flow over cavity were examined by using the three-dimensional, mass-averaged Navier-Stokes equations based on a finite volume scheme and large eddy simulation. The results showed that the resultant amount of attenuation of cavity-induced pressure oscillations was dependent on the length and thickness of the flat plate.

  • PDF