• Title/Summary/Keyword: Cavity flame holder

Search Result 13, Processing Time 0.01 seconds

Characteristics of Jet Type Flame Holder for Ramjet Engine Combustors (램제트 엔진 연소기용 제트분사형 화염안정기의 특성분석)

  • Kang, Sang-Hun;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.14-20
    • /
    • 2007
  • In this study, characteristics of jet type flame holder for ramjet engine combustors are investigated Jet flame holder can be easily controlled by the injection angle change and jet momentum variation without any thermal protection devices. Due to the intensive turbulent mixing effect, jet flame holder shows better flame holding performance than mechanical flame holders such as cavity, step and v-shape flame holder.

  • PDF

Experimental Study on Upstream Fueled Cavity Flame-Holder Scramjet Engine (상류 분사 공동 화염 지지부를 가지는 스크램제트 엔진에 관한 실험적 연구)

  • Jeong, Eun-Ju;Jeung, In-Seuck;O'Byrne, Sean;Houwing, A.F.P.
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.4
    • /
    • pp.1-8
    • /
    • 2006
  • The model cavity scramjet engine experiments are carried out using T3 free-piston shock tunnel. Upstream hydrogen fuel is injected before the cavity with different injection pressure. OH planar laser-induced fluorescence is used to investigate the combustion zone and piezoelectric pressure transducers are used to define the pressure rise due to the combustion. Main combustion region is a mixing layer which is between air and fuel. Also high OH fluorescence signal is appeared in the shear layer above the cavity in high equivalence ratio. From the OH signal in the cavity, this fuel injection system can be a role as a flame-holder.

  • PDF

Experimental Study on Upstream Fueled Cavity Flame-Holder Scramjet Engine (상류 분사 공동 화염 지지부를 가지는 스크램제트 엔진에 관한 실험적 연구)

  • Jeung, In-Seuck;O'Byrne, Sean;Houwing, A.F.P.;Jeong, Eun-Ju
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.197-204
    • /
    • 2006
  • The model cavity scramjet engine experiments are carried out using T3 free-piston shock tunnel. Upstream hydrogen fuel is injected before the cavity with different injection pressure. OH planar laser-induced fluorescence is used to investigate the combustion zone and piezoelectric pressure transducers are used to define the pressure rise due to the combustion. Main combustion region is a mixing layer which is between air and fuel. Also high OH fluorescence signal is appeared in the shear layer above the cavity in high equivalence ratio. From the OH signal in the cavity, this fuel injection system can be a role as a flame- holder.

  • PDF

Characteristics of Flame-holding in a Scramjet Combustor with a Cavity

  • Tanaka, Hideyasu;Takahashi, Shuhei;Uriuda, Yoshitaka;Wakai, Kazunori;Tsue, Mitsuhiro;Kono, Michitaka;Ujll, Yasushige
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.55-61
    • /
    • 2004
  • Numerical simulations were conducted in a rectangular scramjet combustor with a cavity and/or a step in order to investigate their performances for flame-holding. Flow structures and OH radical profiles in the cavity and the step were calculated. The calculated results showed that the cavity generated a larger recirculation zone than the step that had the same depth. Additionally, the combustor with a cavity could make a large low-velocity area than the combustor with a step. The cavity performance was determined by its depth and length. The cavities with too large or too short length did not work effectively, and a certain aspect ratio showed high performance for flame-holding. There was a minimal depth under which the cavity did not work as flame-holder. The fuel injections upstream the cavity and inside the cavity were also tested to investigate the effects on the cavity performance. The result showed that the fuel injection inside the cavity reduced reaction areas and residence time. Therefore, the upstream injection was preferable to the inside injection.

  • PDF

Numerical Simulation Study on Combustion Characteristics of Hypersonic Model SCRamjet Combustor

  • Won, Su-Hee;Eunju Jeong;Jeung, In-Seuck;Park, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.42-47
    • /
    • 2004
  • Air-fuel mixing and flame-holding are two important factors that have to be considered in the design of an injection system. Different injection strategies have been proposed with particular concern for rapid air-fuel mixing and flame-holding. Two representative injection techniques can be applied in a supersonic combustor. One of the simplest approaches is a transverse(normal) injection. The cavity flame holder, an integrated fuel injection/flame-holding approach, has been proposed as a new concept for flame holding and air-fuel mixing in a supersonic combustor. This paper describes numerical efforts to characterize the flame-holding and air-fuel mixing process of a model scramjet engine combustor, where hydrogen is injected into a supersonic cross flow and a cavity. The combustion phenomena in a model scramjet engine, which has been experimentally studied at University of Queensland and Australian National University using a free-piston shock tunnel, were observed around the separation region of the transverse injector upstream and the inside cavity. The results show that this flow separation generates recirculation regions which increase air-fuel mixing. Self-ignition occurs in the separation-freestream and cavity-fteestream interfaces.

  • PDF

Review of the Flame Stabilization Techniques using Cavity (Cavity를 이용한 화염안정화 기술 리뷰)

  • Lee, Tae Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.104-111
    • /
    • 2016
  • The flame stabilization is one of the topics which have to be solved for the airbreathing propulsion systems, using the entering air which is supersonic velocity as an oxygen sources. Making a recirculation zone with an eddy flow, installed the reducing velocity devices such as the bluff body, is the typical method of the flame stabilization. Recently using a cavity flame stabilization at the wall is an emerging technique as an effective method which extends the stabilization zone, and the related research papers have been published on the flow separation and reattachment, pressures and oscillations including length/depth ratios in the cavities. Even though, still there are lots of topics to study more in the cavity flame stabilization field as the preceding techniques, as well as the research and the development of the airbreathing propulsion system itself.

Numerical Investigation about the Ground Test Results of Model Scramjet Engine (모델 스크램제트 엔진의 지상시험결과에 대한 전산해석연구)

  • Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.328-331
    • /
    • 2008
  • In order to see the detailed characteristics of model scramjet engine, numerical analysis was performed and compared to the ground test results done by KARI and UQ. Pressure distribution predicted by numerical analysis showed good agreements with test results. Static temperature and pressure distribution explained the mechanisms of cavity flame holder and W-shape cowl which have showed enhancing effects on the supersonic combustion.

  • PDF

Combustion Characteristics Based on Injector Shape of Supersonic Combustor (초음속 연소기의 인젝터 형상에 따른 연소특성)

  • Jin, Sangwook;Choi, Hojin;Lee, Hyung Ju;Byun, Jong-Ryul;Bae, Juhyun;Park, Dongchang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.76-87
    • /
    • 2019
  • A direct connected test was conducted for a supersonic combustor with a cavity-type flame holder. Liquid hydro-carbon fuel was injected in different types of injectors: inclined and aeroramp injectors, for the flow condition of Mach 4 at an altitude of 20 km. The static pressure on the combustor wall along the axis and the total pressure at the exit of combustor were measured to analyze the combustion characteristics at various fuel flow rates.

Scramjet Engine Combustor Test with Vitiation Heater Type Supersonic Wind Tunnel (Vitiation heater 형 초음속풍동을 이용한 스크램제트 엔진 연소기의 연소시험)

  • Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.586-589
    • /
    • 2009
  • Scramjet engine combustor was tested with "RAMSYS" blow down wind tunnel in Kakuda Space Center, JAXA. As a result, installation of a cavity showed larger combustion pressure than the case without a cavity. Zigzag cavity applied for the first time in this experiment, showed the largest combustion pressure and is expected to contribute to the stable and economic operation of scramjet.

  • PDF

A Unified 3D Numerical Analysis of a Model Scramjet Engine with a Cavity Flame-Holder and Two Intake Side Walls (공동형 보염기를 갖는 모델 스크램제트 엔진의 흡입구 측면효과를 고려한 3차원 통합 유동해석)

  • Yeom, Hyo-Won;Kim, Sung-Jin;Sung, Hong-Gye;Kang, Sang-Hoon;Yang, Soo-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.590-593
    • /
    • 2009
  • To identify the detailed 3D flow characteristics of a model scramjet engine, a unified 3D numerical analysis was performed. The numerical domain of concern includes the entire flow path of the model scramjet engine extending from the intake to the nozzle exhaust. Turbulent models($k-{\omega}$ SST and low Reynolds number k-e with Sarkar model) were applied with comparison of experiment result. Intake side wall's effect on flow characteristics was analyzed in view points of flow quality at inlet duct and near the flame holder as well. The code is paralleled with multi-block feature using MPI(Massage Passing Interface) library to speed up the 3D calculation.

  • PDF