• Title/Summary/Keyword: Cavity design

Search Result 713, Processing Time 0.024 seconds

Effect of surface bolt on the collapse mechanism of a shallow rectangular cavity

  • Huang, Fu;Zhao, Lian-heng;Zhang, Sheng
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.505-515
    • /
    • 2017
  • Based on the collapse characteristics of a shallow rectangular cavity, a three-dimensional failure mechanism which can be used to study the collapsing region of the rock mass above a shallow cavity roof is constructed. Considering the effects of surcharge pressure and surface bolt on the collapsing block, the external rate of works produced by surcharge pressure and surface bolt are included in the energy dissipation calculation. Using variational approach, an analytic expression of surface equation for the collapsing block, which can be used to study the collapsing region of the rock mass above a shallow cavity roof, is derived in the framework of upper bound theorem. Based on the analytic expression of surface equation, the shape of the collapsing block for shallow cavity is drawn. Moreover, the changing law of the collapsing region for different parameters indicates that the collapsing region of rock mass decreases with the increase of the density of surface bolt. This conclusion can provide reference for practicing geotechnical engineers to achieve an optimal design of supporting structure for a shallow cavity.

Study on Fluid Distribution in Slot-die Head Using CFD (CFD를 이용한 슬롯 다이 헤드 내부의 유체 분포 분석)

  • Yoo, Suho;Kim, Gieun;Shin, Youngkyun;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.39-44
    • /
    • 2022
  • Using a CFD (computational fluid dynamics) simulation tool, we have offered a design guideline of a slot-die head having a simple T-shaped cavity through an analysis of the fluid dynamics in terms of cavity pressure and outlet velocity, which affect the uniformity of coated thin films. We have visualized the fluid flow with a transparent slot-die head where poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) is injected. We have shown that the fluid dynamics inside the slot-die head depends sensitively on the cavity depth, cavity length, land length, and channel gap (i.e., shim thickness). Of those, the channel gap is the most critical parameter that determines the uniformity of the pressure and velocity distributions. A pressure drop inside the cavity is shown to be reduced with decreasing shim thickness. To quantify it, we have also calculated the coefficient of variation (CV). In accordance with Hagen-Poiseuille's laws and electron-hydraulic analogy, the CV value is decreased with increasing cavity depth, cavity length, and land length.

Analysis of Cavity Pressure for Packing Conditions in Injection Molding of a Deep Depth Product (깊이가 깊은 제품의 사출성형에서 보압조건에 따른 캐비티 내압의 분석)

  • Kim, Dong Woo;Kang, Mina;Kim, Hyeok;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.685-692
    • /
    • 2012
  • Injection molding operation consists of phases of filling, packing, and cooling. The highest cavity pressure is involved in the packing phase among the operation phases. Thus the cavity pressure largely depends upon velocity to pressure (v/p) switchover timing and magnitude of packing pressure. Developed cavity pressure is directly related to stress concentration in the cavity of mold and it may cause a crack in the mold. Consequently control of cavity pressure is considered very important. In this study, cavity pressure was analyzed in terms of v/p switchover timing and packing pressure through computer simulation and experiment. Cavity pressure was increased as the v/p switchover timing was delayed. Residual pressure after cooling phase was observed when the v/p switchover timing was late, which was due to increased pressurizing time for long filling phase. Cavity pressure was increased proportionally with the packing pressure. Residual pressure after cooling phase was also observed, and it was increased with increasing packing pressure. High cavity pressure and residual pressure have been observed at late v/p switchover and high packing pressure. Compared with simulation and experimental results, the profiles of pressures were very similar however simulation could not predict residual pressure. Packing condition was important for the control of cavity pressure and the optimum condition could be set up using CAE analysis.

Comparison of Molding Characteristics for Multi-cavity Molding in Conventional Injection Molding and Injection Compression Molding (다수 개 빼기 성형에서 일반사출성형과 사출압축성형의 성형특성 비교)

  • Lee, Dan Bi;Nam, Yun Hyo;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.144-149
    • /
    • 2014
  • Large residual stresses are remained in the conventional injection molded products because of the high cavity pressure in packing phase during injection molding process. Conventional injection molding (CIM) invokes distribution of cavity pressure and it has a limitation to obtain product with uniform physical property. Multi-cavity conventional injection molding contains quality deviation among the cavities since flow imbalance occurs during filling phase. Injection compression molding (ICM) is adopted to overcome these limitations of CIM. In this study, molding characteristics of CIM and ICM have been investigated using multi-cavity injection mold. Researches were performed by both experiment and computer simulation through observations of birefringence for transparent resins, polycarbonate and polystyrene in CIM and ICM. As a result, low and uniform birefringence and mold shrinkage were showed in the specimens by ICM that could give a uniform cavity pressure. Deviation of physical property among the specimens in multi-cavity mold shown in CIM was significantly reduced in the specimens by ICM. Through this study it was concluded that the ICM in multi-cavity molding was valid for molding products with uniform property in an individual cavity and also reduced property deviation among the cavities.

Design and Characterization of a Microwave Plasma Source Using a Rectangular Resonant Cavity (마이크로웨이브 공진 공동을 이용한 플라즈마 원의 설계 및 특성)

  • Kim, H.T.;Park, Y.S.;Sung, C.K.;Yi, J.R.;Hwang, Y.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.5
    • /
    • pp.408-418
    • /
    • 2008
  • The rectangular resonant cavity was designed and characterized as a microwave plasma source for focused ion beam. The optimum cavity was calculated analytically and analyzed in detail by using HFSS(High Frequency Structure Simulator). Since the resonant cavity can be affected by the permittivity of quartz chamber and plasma, the cavity is designed to be changeable in one direction. By observing the microwave input power at which the breakdown begins, the optimum cavity length for breakdown is measured and compared with the calculated one, showing in good agreement with the optimum length reduced by 10cm according to the permittivity change in the presence of quartz chamber. The shape of breakdown power curve as a function of pressure appears to be similar to Paschen-curve. After breakdown, plasma densities increase with microwave power and the reduced effective permittivity in the cavity with plasma results in larger optimum length. However, it is not possible to optimize the cavity condition for high density plasmas with increased input power, because too high input power causes expansion of density cutoff region where microwave cannot penetrate. For more accurate microwave cavity design to generate high density plasma, plasma column inside and outside the density cutoff region needs to be treated as a conductor or dielectric.

Dual Band Design of Aperture-Coupled Cavity-Fed Microstrip Antenna (이중 대역 개구면 결합 공진기 급전 마이크로스트립 안테나 설계)

  • Jang, Guk-Hyun;Nam, Kyung-Min;Lee, Jang-Hwan;Nam, Sang-Ho;Kim, Chul-Un;Kim, Jeong-Phill
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.3 s.357
    • /
    • pp.26-32
    • /
    • 2007
  • A simple but accurate equivalent circuit of an aperture-coupled cavity-fed microstrip patch antenna is developed. It consists of ideal transformers, admittance elements, and transmission lines, and the related circuit element values are computed by applying the reciprocity theorem and complex power concept with the spectral-domain immittance approach. After validating by the published design example, a dual-band antenna was designed with the help of a hybrid optimization method. For this purpose, the Genetic Algorithm is applied with the Nelder-Mead simplex method. The obtained good results show that this approach turned out to be a very efficient tool for the design of aperture-coupled cavity-fed microstrip patch antenna having various structural design parameters.

Design of a 2~18 GHz Wideband Cavity-Backed Spiral Antenna (2~18 GHz 광대역 캐비티 백 스파이럴 안테나 설계)

  • Cho, Jung-Rae;Park, Jin-Oh;You, Byung-Sek;Jeong, Un-Seob;Chung, Woo-Sung;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.10
    • /
    • pp.1166-1174
    • /
    • 2008
  • In this paper, design of a $2{\sim}18$ GHz wideband cavity-backed spiral antenna is investigated. Firstly, an arm pattern and a backing cavity of a cavity-backed spiral antenna are designed based on the design theory of an Archimedean spiral antenna as well as by using CST's MWS. VSWR, axial ratio, and HPBW(Half Power Beam Width) characteristics are considered in the simulation. Secondly, a Marchand coaxial balun is designed to meet the required VSWR within the frequency band of operation. Finally, the validity of these approaches is verified by comparing the simulated results with measured ones.

Mixing Characteristics of Various Cavity Shapes in SCRamjet Engine (스크램제트 엔진 내부 Cavity 형상 변화에 따른 혼합 성능 특성)

  • Oh, Ju-Young;Seo, Hyung-Seok;Byun, Yung-Hwan;Lee, Jae-Woo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.57-63
    • /
    • 2008
  • In combustor of SCRamjet of air-breathing engine type, the flow duration time is very short because of the supersonic air flow. In this short duration, the whole process of combustion should be done, so it is very important to study supersonic combustion technologies. In this study, we focus fuel-air mixing enhancement method using cavity and conducted 3-dimensional Navier-Stokes computational analysis. Cavity height is fixed by 10mm, length is changed from 0 to 40mm. There is a supersonic jet injection downstream of the cavity and the hole size is 1mm. As a result, the higher ratio of cavity length/height is, the higher value of vorticity gets. The increased area of vorticity expands to upper and sidewise combustor. However, the stagnation pressure loss which generates thrust loss becomes higher when the vorticity is higher. Considering these result, we can conclude that optimized design which considers the highest mixing performance and the least stagnation pressure loss is needed.

Neutron Streaming and PWR Cavity Shielding Design

  • Kim, Kyo-Sool;Lee, Chang-Kun
    • Nuclear Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.127-134
    • /
    • 1980
  • Shielding problems associated with neutron streaming through the reactor vessel cavity of pressurized water reactors are discussed to a certain extent with the actual examples in the currently operating reactors. Various remedial techniques are proposed herein to mitigate the tedious neutron streaming phenomena including piling up in heaps of temporary boron-containing bags and the installation of permanent shield structure making use of a certain refractory materials. In conclusion, optimum cavity shielding design concepts are presented with special emphasis on such major factors as the identification of major neutron streaming path, selection of necessary shielding materials with acceptable constraints, detailed design characteristics and physical configuration as well as the formulation of dependable mathematical tools to predict the final outcome of each design concept proposed in the context.

  • PDF

Design and test result of a superconducting double-spoke cavity

  • Jiang, Tiancai;Huang, Yulu;Zhang, Shengxue;Liu, Lubei;Xiong, Pingran;Li, Chunlong;Guo, Hao;Yue, Weiming;Zhang, Shenghu;He, Yuan
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.877-883
    • /
    • 2019
  • Superconducting multi-spoke cavities are outstanding alternative choice for acceleration of heavy ions in medium velocity regimes. Based on the scheme of China ADS, several researches on the superconducting double-spoke cavities were done and two prototype cavities have been developed. In this paper, the RF design, the mechanical design and fabrication considerations of the bare cavity will be described in detail. After Buffered Chemical Polishing and High Pressure Rinsing, one of the prototype cavities was installed into the Vertical Test Stand for high gradient RF testing at 4.2 K. The measurement results of the quality factor as a function of the accelerating field and the maximum surface field will be presented. An accelerating gradient of more than 15 MV/m is achieved during the test, with maximum surface electric field of 58 MV/m, and maximum surface magnetic field of 117 mT.