• Title/Summary/Keyword: Cavity design

Search Result 713, Processing Time 0.03 seconds

An Experimental Study on Ventilated Supercavitation of the Disk Cavitator (원판 캐비테이터의 환기 초공동에 대한 실험적 연구)

  • Kim, Byeung-Jin;Choi, Jung-Kyu;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.3
    • /
    • pp.236-247
    • /
    • 2015
  • In this paper, the experimental equipments for ventilated supercavitation in cavitation tunnel is constructed and the basic data of ventilated supercavitation regard to the entrainment coefficient and Froude number is fulfilled. The experiments are conducted for the disk cavitator with injecting air and the pressure inside cavity and the shape of cavity are measured. As the entrainment coefficient increases while the Froude number is kept constant, the ventilated cavitation number decreases to a minimum value which decreases no more even with increasing the air entrainment. The minimum value of ventilated cavitation number, caused by the blockage effect, decreases according to increasing the diameter ratio of test section to cavitator. The cavity length is rapidly enlarged near the minimum cavitation number. In low Froude numbers, the cavity tail is floating up due to buoyancy and the air inside the cavity is evacuated from its rear end with twin-vortex hollow tubes. However, in high Froude numbers, the buoyancy effect is almost negligible and there is no more twin-vortex tubes so that the cavity shape becomes close to axisymmetric. In order to measure the cavity length and width, the two methods, which are to be based on the cavity shapes and the maximum width of cavity, are applied. As the entrainment coefficient increases after the ventilated cavitation number gets down to the minimum cavitation number, the cavity length still increases gradually. These phenomenon can be confirmed by the measurement using the method based on the cavity shapes. On the other hand, when the method based on the maximum width of cavity is used, the length and width of the cavity agree well with a semi-empirical formular of natural cavity. So the method based on the maximum width of cavity can be a valid method for cavitator design.

FINITE ELEMENT STRESS ANALYSIS OF A TOOTH RESTORED WITH CAD/CAM CERAMIC INLAY (CAD/CAM 세라믹 인레이로 수복한 치아의 응력분포에 관한 유한요소법적 연구)

  • 송보경;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.6
    • /
    • pp.464-484
    • /
    • 2001
  • When restoring a tooth, the dentist tries to choose the ideal material for existing situation. One criterion that is considered is its suitability for restoring coronal strength. As more tooth structure is removed, the cusps are weakened and susceptible to fracture. Further, this increased deformation may cause the formation of intermittent gaps at the margin between the hard tissue and the restoration, facilitating marginal leakage. The improvements in ceramic materials now make it possible for alternatives to amalgams, composites, and cast metal to be of offered for posterior teeth. Of the materials used, ceramics most closely approximates the properties of enamel. The introduction of computer-aided design/computer-aided manufacture(CAD/CAM) systems to restorative dentistry represents a major technological breakthrough. It is possible to design and fabricate ceramic restorations at a single appointment. Additionally, CAD/CAM systems eliminate certain errors and inaccuracies that are inherent to the indirect method and provide an esthetic restoration. The aim of this investigation was to study the loading characteristics of CAD/CAM ceramic inlay and to compare the stress distribution and displacement associated with different designs of cavity(the isthmus width and cavity depth). A human maxillary left first premolar was prepared with standard mesio-occlusal cavity preparation, as recommended by the manufacturer Ceramic inlay was fabricated with CEREC 2 CAD/CIM equipment and cemented into the prepared cavity. Three dimensional model was made by the serial photographic method. The cavity width was varied $\frac{1}{3}$, $\frac{1}{2}$ and $\frac{2}{3}$ of intercuspal distance between buccal and lingual cusp tip. The cavity depth was varied 1.5mm and 2.3mm. So six models were constructed to simulate six conditions. A point load of 500N was applied vertically onto the first node of the lingual slope from the buccal cusp tip. The stress distribution and displacement were solved using ANSYS finite element program(Swanson Analysis System). (omitted)

  • PDF

A Novel Runner Design for Flow Balance of Cavities in Multi-Cavity Injection Molding (다수 빼기 사출성형에서 캐비티간 충전균형을 위한 새로운 런너의 설계)

  • Park, Seo-Ri;Kim, Ji-Hyun;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.561-568
    • /
    • 2009
  • Small injection molded articles are generally molded by multi-cavity injection molding. The most important thing in multi-cavity molding is flow imbalance among the cavities because it affects the physical property and the quality of products. The cavity filling balance can be achieved by flow balance in the runner through the thermal balance. In this study, novel screw type runner or helical type runner has been developed for the flow balance in the runner and performed experiment and computer simulation. Flow balance has been observed using various screw type runners for several resins such as amorphous and crystalline polymers including low and high viscosities grades. Flow balance experiments have been performed for various injection speeds since the flow balance can be affected by injection speed among the injection conditions. Experimental results have been compared with computational results and they showed good agreement. The cavity filling balance can be achieved by the screw runner where the temperature distribution is uniform through the circulation flow along the screw channel in the screw runner. It has been verified that the novel screw runner is very effective device in flow balance in the multi-cavity injection molding. cavity filling imbalance, multi-cavity injection molding, runner design, screw runner, thermal balance.

Design, fabrication and test of a taper-type half-wave superconducting cavity with the optimal beta of 0.15 at IMP

  • Yue, Weiming;Zhang, Shengxue;Li, Chunlong;Jiang, Tiancai;Liu, Lubei;Wang, Ruoxu;Huang, Yulu;Tan, Teng;Guo, Hao;Zaplatin, Evgeny;Xiong, Pingran;Wu, Andong;Wang, Fengfeng;Zhang, Shenghu;Huang, Shichun;He, Yuan;Yao, Zeen;Zhao, Hongwei
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1777-1783
    • /
    • 2020
  • As a part of R&D work for the high intensity proton linac of China Accelerator Driven Sub-critical System project, a superconducting half-wave cavity with a frequency of 162.5 MHz and an optimal beta of 0.15 (HWR015) has been developed at Institute of Modern Physics (IMP), Chinese Academy of Sciences. In this paper, the design and test results will be described in detail. We introduced a new stiffening strategy for the HWR cavity, the simulation results show that the cavity has much lower frequency sensitivity coefficient (df/dp), Lorentz force detuning coefficient (KL), and can achieve more stable mechanical properties. The performance of the HWR cavity operated in cryostat will be also reported.

Design Sensitivity in Quasi-One-Dimensional Silicon-Based Photonic Crystalline Waveguides

  • Kinoshita, Takeshi;Shimizu, Akira;Iida, Yukio;Omura, Yasuhisa
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.1
    • /
    • pp.55-61
    • /
    • 2003
  • This paper describes how the optical properties of a quasi-one-dimensional photonic crystalline waveguide having a periodic air cavity are influenced by various structural parameters; the electromagnetic fields are simulated using the finite-difference time-domain method. The simulations considered four design parameters: cavity size, defect size, lattice constant, and number of cavity. The parameter sensitivity of the photonic bandgap property of the waveguide having air cavities is examined. A couple of significant design guidelines are obtained. We show that the quasi-one-dimensional photonic crystalline waveguide has significant unrealized potential.

Design of A Noise Controller for A Linear system using the CDM (CDM 방법을 사용한 선형시스템의 신뢰성 있는 소음제어기 설계)

  • Kim, Jung-Whan;Chung, Tea-Jin;Lee, Sang-Cheol;Jeong, Yang-Woong;Chung, Chan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.455-457
    • /
    • 1998
  • This paper designs a noise controller for the small cavity using Coefficient Diagram Method(CDM). In the small cavity system, there exist nonlinear characteristics such as uncertain-time delay and parameter variation. In the controller design of nonlinear system with uncertainty need to the higher order controller or complexity computation. The coefficient diagram is convenient implementation of the control system design method, that is utilized as a vehicle to collectively express the important features of the system and an improved version Kessler's standard form and the Lipatov stability condition of a constitutes the theoretical basis. Simultaneously, it is provided a desired specification, such as the robustness, the stability, faster response, and lower order controller. A simulation of the system with the proposed controller shows sufficient noise cancelation in small cavity.

  • PDF

A design and construction for reinforcement of bridge foundations on the limestone cavities (교량기초를 위한 석회암 공동지반의 지반보강 설계 및 시공)

  • 박종호;최용기;한현희;김태훈;박용원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.205-212
    • /
    • 2002
  • Carbonate rocks such as limestone are susceptible to solution and show numerous solution cavities. For the construction of the structures such as bridge foundations and tunnel on the limestone cavities, the geological unconformities developed in the bed rocks, cavity systems and the filling types of solution deposits should be surveyed and analyzed. And also, the stability of structures on the limestone cavities must be taken into consideration in the view of the geotechnical engineering. As a result of analysis of the foundation settlement, an economic and effective reinforcement method is to be proposed and the construction by the proposed method is to be accompanied with verification of reinforcement effect. This paper is a case study of design and construction for the reinforcement of bridge foundations on the limestone cavity covered with thick bedded colluvial soils.

  • PDF

Analysis of Cavity Pressure and Dimension of Molded Part According to V/P Switchover Position in Injection Molding

  • Cho, Jung Hwan;Kwon, Soon Yong;Roh, Hyung Jin;Cho, Sung Hwan;Kim, Su Yeon;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.309-316
    • /
    • 2017
  • In injection molding, the quality of an injection molded product varies greatly depending on the molding conditions. Many researche studies have been conducted on the quality analysis of molded parts according to the molding conditions such as injection pressure, injection temperature, and packing pressure. However, there have not been many studies on the V/P switchover timing. It is known that when a large pressure is applied to a cavity in the packing phase, the cavity pressure is most affected by the packing pressure. In addition, depending on the position (timing) of the packing pressure, it can have a direct influence on quality based on the shrinkage and dimensions of the molded parts. In this study, the change in pressure profile in the cavity according to the V/P switchover position is confirmed. A CAE analysis program (Moldflow) was used to simulate and analyze two models using the PC and PBT materials. In order to compare these results with the actual injection molding results, injection molding was performed for each V/P switchover position, and the correlation between simulation and experiment, especially for the shrinkage of molded parts, was evaluated.

Design of a 0.5~2 GHz Cavity-Backed Spiral Antenna (0.5~2 GHz 캐비티 백 스파이럴 안테나 설계)

  • Jeon, Nam-Du;Shin, Dong-Hoon;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.269-277
    • /
    • 2010
  • In this paper, the design of a 0.5~2 GHz cavity-backed spiral antenna is described. Combined arm pattern with a log spiral in the inner region and an Archimedean spiral in the outer region, a backing cavity, and a Marchand coaxial balun for feeding are designed. Termination resistors are used to improve antenna characteristics at the lower frequency of the operation frequency. VSWR, axial ratio, gain and HPBW(Half Power Beam Width) characteristics are simulated using CST's MWS. Finally, the validity of these approaches is verified by comparing the simulated results with the measured ones. Also, the measurement results are compared with the performance of a commercial spiral antenna.

Design of a High Gain Microstrip Antenna with Rectangular Cavity Backed (구형 캐비티 부착형 고이득 마이크로스트립 안테나 설계)

  • 임정섭;이문수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.822-828
    • /
    • 2001
  • In this paper, a high gain microstrip antenna with rectangular cavity backed is designed. A single microstrip patch is basically a low gain radiator As a ga in enhancement method, superstrate loading techniques are applied to the $2\times2$ microstrip array antenna with cavity backed. In antenna design, although the broadside gain increases as the cavity is enlarged, a cavity size of $3\times3$ wavelength is sufficient. The distance between the radiating elements is chosen as 1.5 free-space wavelength. The antenna radiation characteristics are calculated by IE3D software and compared with the experimental results. Experimental results show that the maximum gain is 18.6dBi at the frequency of 9.16GHz, which is good agreement with the calculations.

  • PDF