• 제목/요약/키워드: Cavity depth

검색결과 283건 처리시간 0.022초

와류실식 소형 디젤기관의 연소실 형상이 기관 성능에 미치는 영향(II) (The Effect of Combustion Chamber Shape on the Performance of Swirl Chamber in Diesel Engine(II))

  • 라진홍
    • 한국해양공학회지
    • /
    • 제13권3B호
    • /
    • pp.47-55
    • /
    • 1999
  • A study on swirl chamber for diesel engine is to realize lower fuel consumption and exhaust emission than the current marketing engines. Author formerly reported the performance characteristics of small IDI diesel engine with swirl chamber by changing the jet passage area and its angle, and the depth and shape of the piston top cavity. Following after the first report, in this paper, the characteristics of fuel consumption, soot emission, and exhaust gas temperature were examined and analyzed after dimension of jet passage area expanded to $70.1mm^2$ The results were that the optimum values of the jet passage area depending on the depth of the piston top cavity were different at each engine speeds and loads, and in accordance with application of engine running conditions they were able to be selected as optimum dimensions of each design parameters.

  • PDF

GPR을 이용한 토조의 공동 탐사 (Cavity Detection of Chamber by GPR)

  • 이현호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권2호
    • /
    • pp.86-93
    • /
    • 2016
  • 본 연구에서는 토조에 설치한 관의 종류 및 매립 깊이, 공동 깊이 및 포장 조건 등에 대한 GPR(Ground Penetrating Radar) 탐사를 진행하여 매립관의 종류 및 공동 탐사 능력을 실험적으로 규명하였다. 아스팔트 포장 및 비포장의 경우, 콘크리트 포장 및 철근 콘크리트 포장 대비 매립관의 탐사가 용이한 것으로 평가되었다. 또한 공기 공동의 경우, 매립 깊이 1 m에서는 탐지가 가능한 것으로 평가되었다.

Study of the unsteady pressure oscillations induced by rectangular cavities in a supersonic flow field

  • Krishnan L.;Ramakrishna M.;Rajan S.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.294-298
    • /
    • 2003
  • The complex, unsteady, self-sustained pressure oscillations induced by supersonic flow past a rectangular cavity is investigated using numerical simulations. The present numerical study is performed using a parallel, multiblock solver for the two-dimensional, compressible Navier­Stokes equations. Open cavities with length-to-depth (L / D) ratio in the range 0.5 - 3.3 are considered. This paper sheds light on the cavity physics, cavity oscillatory mechanism, and the organisation of vortical structures inside the cavity. The vortex shedding phenomenon, the shear layer impingement event at the aft wall and the movement of the acoustic/compression wave within the cavity are well predicted. The vortical structures· and the source of the acoustic disturbances are found to be located near the aft wall of the cavity. With the increase in the cavity length, strong recompression of the flow near the aft wall leading to a sudden jump in the cavity form drag is observed. The estimated cavity tones are in good agreement with the available semi­empirical relation. Multiple peaks are noticed in deep and long cavities. For the present free­stream Mach number 1.71, it is observed that around L/D=2.0, the cavity oscillatory mechanism changes from the transverse to longitudinal oscillatory mode. The effects of this transition on various fluid dynamics and acoustic properties are also discussed.

  • PDF

보조공동계를 이용한 공동 유기 압력진동의 피동제어 (A Passive Control of Cavity-Induced Pressure Oscillations Using Sub-Cavity System)

  • 강민성;권준경;이종성;김희동
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.452-455
    • /
    • 2008
  • A new passive control technique of cavity-induced pressure oscillations has been investigated numerically for a supersonic two-dimensional flow over open rectangular cavities at Mach number 1.83 just upstream of a cavity, in which a sub-cavity system is installed on the backward-facing step of the main cavity. A third-order TVD (Total Variation Diminishing) finite difference scheme with MUSCL is used to discretize the spatial derivatives in the unsteady compressible Navier-Stokes equations. The results obtained show that the present sub-cavity system is very effective in reducing cavity-induced pressure oscillations. The results also showed that the resultant amount of attenuation of cavity-induced pressure oscillations was dependent on the length and thickness of the flat plate, and also on the depth of the sub-cavity used as an oscillation suppressor.

  • PDF

GPR 및 단일채널 탄성파탐사에 의한 터널라이닝 배면공동 조사 (Detection of the Cavity Behind the Tunnel Lining by Single Channel Seismic and GPR Method)

  • 신성렬;조철현;신창수;양승진;장원일
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제2권4호
    • /
    • pp.148-158
    • /
    • 1998
  • Determining the thickness if concrete lining and detecting of the cavity where is located behind tunnel lining plays an important role in the safety diagnosis of tunnel structure and the quality control. In this study, we made use of GPR and seismic method in order to find the cavity or flaw. Although GPR is very useful method in the concrete lining without rebar, it is difficult to detect the cavity in the reinforced concrete lining. We applied mini-seismic method to the reinforced concrete lining. The obtained seismic data was processed by means of seismic section in time domain and image section of power spectrum in frequency domain using Impact-Echo method as well. The proposed method can accurately show the location and depth of the cavity in the reinforced concrete lining.

  • PDF

기울어진 수조에 액적 충돌로 발생한 최대 공동 예측 모델 (Maximum cavity radius prediction model generated by drop impact in an inclined bath)

  • 이예완;김영도;김형수
    • 한국가시화정보학회지
    • /
    • 제17권2호
    • /
    • pp.83-89
    • /
    • 2019
  • In this study, we show the maximum cavity radius prediction model that a droplet impacts an inclined bath. Surface tensions, viscosities, inclination angles of a bottom substrate, droplet diameters, falling heights of the droplet are varied for the experiment. We experimentally observe that the cavity grows in hemispherical shape like the cavity formed in a deep bath although the depth of the bath is non-uniform due to an inclined bottom substrate. We derive two theoretical models to predict the experimental results of the fully developed cavity. Although each model has error, we observe that qualitatively theoretical model predicts the trend of experiment results well.

3차원 공동의 폭변화에 따른 초음속 유동에 대한 수치분석연구 (NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO)

  • 우철훈;김재수;최홍일
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.181-184
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation and reattachment, shock and expansion waves. The general cavity flow phenomena include the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity' flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions, The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio(L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyized and compared with the results of Rossiter's Eq.

  • PDF

공동의 폭 변화에 따른 3차원 초음속 공동 유동연구 (NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO)

  • 우철훈;김재수
    • 한국전산유체공학회지
    • /
    • 제11권4호
    • /
    • pp.62-66
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation, reattachment, shock waves and expansion waves. The general cavity flow phenomena includes the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions. The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio (L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyzed and compared with the results of Rossiter's Eq.

개방와동에서 상아질과 치수의 조직변화에 관한 연구

  • 김인철;박문식
    • 대한치과의사협회지
    • /
    • 제12권3호
    • /
    • pp.195-198
    • /
    • 1974
  • The purpose of this study is to obtain the histopathological change of dentin and pulp when the prepared cavity is exposed to oral fluid without protection. The results were as follows: 1. Hyperemia of pulp blood vessel and round cell infiltration in odontoblast layer observed on the one week experimental dogs. 2. Marked edematous change, round cell infiltration, fibrotic change and prolif eration of collagenous fiber showed on the 8 week experimental dogs. 3. Prepared cavity should be protected by the biologically accepted lining mater ials regardless of cavity depth.

  • PDF

LTCC를 이용한 RF MEMS 소자의 실장법 (LTCC-Based Packaging Technology for RF MEMS Devices)

  • 황근철;박재형;백창욱;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 C
    • /
    • pp.1972-1975
    • /
    • 2002
  • In this paper, we have proposed low temperature co-fired ceramic (LTCC) based packaging for RF MEMS devices. The packaging structure is designed and evaluated with 3D full field simulation. 50 ${\Omega}$ matched coplanar waveguide(CPW) transmission line is employed as the test vehicle to evaluate the performances of the proposed package structure. The line is encapsulated with the LTCC packaging lid and connected to the via feed line. To reduce the insertion loss due to the packaging lid, the cavity with via post is formed in the packaging lid. The performances of the package structure is simulated with the different cavity depth and via-to-via length. Simulation results show that the proposed package structure has reflection loss better than 20 dB and insertion loss lower than 0.1 dB from DC to 30 GHz with the cavity depth and via-to-via length of 300 ${\mu}m$ and 350 ${\mu}m$, respectively. To realize the designed package structure, the cavity patterning is tested using the sandblast of LTCC.

  • PDF