• 제목/요약/키워드: Cavity bubble

검색결과 43건 처리시간 0.02초

UV NIL공정에서 몰드 중공부 형상과 기포결함에 대한 수치해석 (Numerical Analysis of Effects of Mold Cavity Shape on Bubble Defect Formation in UV NIL)

  • 이호성;김보선;김국원
    • 한국산학기술학회논문지
    • /
    • 제19권1호
    • /
    • pp.596-602
    • /
    • 2018
  • 최근 나노임프린트 리소그래피 공정이 마이크로/나노 스케일의 소자 개발에 있어서 경제적으로 대량 생산할 수 있는 기술로 주목 받고 있다. 자외선경화 방식의 나노임프린트의 경우 상온 및 저압의 장점과 함께 비진공 환경에서 공정을 통하여 설비 비용의 저감과 생산공정의 고속화를 달성할 수 있다. 그러나 이 경우 비진공 환경에서 발생하는 기포결함의 문제를 해결해야만 한다. 본 연구에서는 비진공 환경에서의 자외선경화 방식의 나노임프린트 공정에서 몰드 중공부 단면의 형상과 기포결함 발생 관계를 연구하였다. 일반적으로 많이 사용되는 사각형 단면과 타원형 단면 그리고 삼각형 단면에 대하여 2차원 유동해석 및 VOF 방법을 통하여 기포결함을 시뮬레이션 하였고 단면의 형상과 다양한 접촉각에 따른 유동선단의 특성을 분석하였다. 해석결과 몰드 중공부 형상은 기포결함 발생에 매우 중요한 영향을 미치며, 고려된 형상 모두 몰드와의 접촉각이 작을수록, 기판과의 접촉각이 클수록 기포결함 발생 가능성이 작아짐을 알 수 있었다. 또한 타원형 형상이 기포결함 발생방지 측면에서 가장 효과적임을 확인하였다.

인공 캐비티를 가진 히터를 이용한 가열면의 채널 높이가 풀비등시 기포성장에 미치는 영향에 대한 기초연구 (Effect of channel hight on Bubble growth under Saturated Nucleate Pool Boiling for Various Channel Height using Heater with Artificial Cavity)

  • 김정배;박문희;전우철
    • 한국태양에너지학회 논문집
    • /
    • 제30권5호
    • /
    • pp.93-99
    • /
    • 2010
  • Nucleate pool boiling experiments with constant heat flux condition were performed using pure R113 for various channel heights under saturated pool condition. A circular heater of 1mm diameter, with artificial cavity in the center, fabricated using MEMS technique and the high-speed controller were used to maintain the constant heat flux. Images of bubble growth were taken at 5,000 frames per second using a high-speed CCD camera. The bubble geometry was obtained from the captured bubble images. The effects of channel height on the bubble growth behaviors were analyzed as dimensional scales for the initial and thermal growth regions. The parameters for the bubble growth behaviors were bubble radius, bubble growth rate, and bubble shapes. These phenomena require further analysis for various surface angles, but this study will provide good experimental data with constant heat flux boundary condition for such works.

인공 캐비티를 가진 히터를 이용한 가열면 경사각에 따른 포화상태 풀 핵비등 열전달 기초연구 (Heat Transfer Characteristics under Saturated Nucleate Pool Boiling for Various Heating Surface Angles using Heater with Artificial Cavity)

  • 김정배
    • 한국태양에너지학회 논문집
    • /
    • 제29권4호
    • /
    • pp.7-14
    • /
    • 2009
  • Nucleate pool boiling experiments with constant heat flux condition were performed using pure R11 and R113 for various surface angles under saturated pool condition. A circular heater of 1 mm diameter, with artificial cavity in the center, fabricated using MEMS technique and the high-speed controller were used to maintain the constant heat flux. Images of bubble growth were taken at 5,000 frames per second using a high-speed CCD camera. The bubble geometry was obtained from the captured bubble images. The effects of surface angles on the bubble growth behaviors were analyzed as dimensional scales for the initial and thermal growth regions. The parameters for the bubble growth behaviors were bubble radius, bubble growth rate, sliding velocity, bubble shape and advancing and receding contact angles. These phenomena require further analysis for various surface angles, but this study will provide good experimental data with constant heat flux boundary condition for such works.

미세 입자로 충전된 캐비티에서의 열 기포 형성 (Formation of Thermal Bubble from Particle-Filled Microcavity)

  • 정광훈;이헌주;장영수;이윤표;김호영
    • 대한기계학회논문집B
    • /
    • 제31권3호
    • /
    • pp.248-255
    • /
    • 2007
  • Thermal bubble formation is a fundamental process in nucleate boiling heat transfer and many microelectromechanical thermal systems. One of the established facts is that heterogeneous nucleation is originated from vapors trapped inside cavities. Based on this, we performed an experimental study on the formation of thermal bubbles from microcavity fabricated by microfabrication technology on a copper plate. The cavity was filled with aluminum particles to enhance thermal bubble formation. We observed the thermal bubble behaviors, such as bubble incipience, diameter, frequency and coalescence during nucleate boiling. The experimental data showed that the superheat required to trigger the bubble formation was significantly reduced when the cavity was filled with microparticles. We found that the initial increase of superheat led to the increase of both the departure diameter and frequency while the further increase of superheat caused multiple bubbles to coalesce resulting in the decrease of departure frequency.

TLC 를 이용한 사각공동내의 열전도 영역에 기포의 형성으로 인한 열전달 현상 구명 (A Study of Heat Transfer Phenomena due to a Formed Gas Bubble under Heat-Conduction Domain in A Closed Square Cavity)

  • 엄용균;유재봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.85-89
    • /
    • 2003
  • In a closed square cavity filled with a liquid, a cooled the upper horizontal wall and a heated the lower horizontal wall, the flow isn't generated under the ground-based condition when Rayleigh number is lower than 1700. In such case the flow phenomena near an air bubble under a cooled horizontal wall were investigated. The temperature and the flow fields were studied by using the Thermo-sensitive Liquid-Crystal and the image processing. The qualitative analysis for the temperature and the flow fields were carried out by applying the image processing technique to the original data. Injecting bubble at the center point of upper cooled wall, the symmetry shape of two vortexes near an air bubble was observed. The bubble size increased, the size of velocity and the magnitude of velocity increased. In spite of elapsed time, a pair of two vortexes was the unique and steady-state flow in a square cavity and wasn't induce to the other flow in the surround region.

  • PDF

Experimental Study of Heating Surface Angle Effects on Single Bubble Growth

  • Kim, Jeong-Bae;Kim, Hyung-Dae;Lee, Jang-Ho;Kwon, Young-Chul;Kim, Jeong-Hoon;Kim, Moo-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1980-1992
    • /
    • 2006
  • Nucleate pool boiling experiments were performed using pure R11 for various surface angles under constant heat flux conditions during saturated pool boiling. A 1-mm-diameter circular heater with an artificial cavity in the center that was fabricated using a MEMS technique and a high-speed controller were used to maintain the constant heat flux. Bubble growth images were taken at 5000 frames per second using a high-speed CCD camera. The bubble geometry was obtained from the captured bubble images. The effects of the surface angle on the bubble growth behavior were analyzed for the initial and thermal growth regions using dimensional scales. The parameters that affected the bubble growth behavior were the bubble radius, bubble growth rate, sliding velocity, bubble shape, and advancing and receding contact angles. These phenomena require further analysis for various surface angles and the obtained constant heat flux data provide a good foundation for such future work.

Vapor Bubble Nucleation : A Microscopic Phenomenon

  • Kwak, Ho-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1271-1287
    • /
    • 2004
  • In this article, vapor bubble nucleation in liquid and the evaporation process of a liquid droplet at its superheat limit were discussed from the viewpoint of molecular clustering (molecular cluster model for bubble nucleation). For the vapor bubble formation, the energy barrier against bubble nucleation was estimated by the molecular interaction due to the London dispersion force. Bubble nucleation by quantum tunneling in liquid helium under negative pressure near the absolute zero temperature and bubble nucleation on cavity free micro heaters were also presented as the homogenous nucleation processes.

열감응액정을 이용한 사각공동내의 상단냉각평판에 형성된 기포 주위의 열전달현상 구명 (Experimental study of heat transfer in the surrounding for bubble attached at the upper cooled surface of square cavity using the Thermo-sensitive Liquid-crystal Tracer)

  • 권기한;엄용균
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.509-515
    • /
    • 2001
  • In a square cavity, the flow phenomena in the surrounding of the bubble attached at the upper cooled solid wall were studied by using a thermo-sensitive liquid-crystal tracer and image processing techniques. This method offers the advantage of measuring the entire flow field in a selected plane within the fluid at a given instant of time in contrast to point by point method like T/C. Quantitative data of the temperature were obtained by applying a colour-image-processing to the. visualized image. As the growing of a bubble, In a bubble size appears the flow phenomena which the direction of flow is reversed in the entire temperature and flow field. The observed phenomena are described with regard to thermocapillary convection.

  • PDF

DOUBLE STARS AS TRACERS OF TINY STRUCTURES IN THE INTERSTELLAR MEDIUM

  • MORABBI, SOMAYEH;MIRTORABI, MOHAMMAD TAGHI
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.89-91
    • /
    • 2015
  • Observed spectra of stars around the Sun have indicated that the Sun is located in a gas cavity, extending to 100pc. This gas cavity is called the "Local Bubble". The density of the interstellar medium (ISM) in the local bubble is about one tenth that of the average for the ISM in the Milky Way. Furthermore, some structures such as gas planes and strings in the local bubble are probably the result of supernovae. These, due to their low temperatures, can not be observed in the visible and infrared. The only way to do so is to measure the spectra of nearby stars so that the light of stars passing through the local bubble is absorbed by existing gas and the resulting spectral lines from absorption can be measured. In this study, we use binary stars to trace the local bubble structures through lines such as the Na I Doublet. First, we determined the observed spectral lines of stars by HARPS and FEROS echelle spectrographs. Then, we made synthetic spectra with the ATLAS9 code. Finally, the difference between the observational and synthetic spectra confirms the existence of the Na I Doublet in the local ISM.

Pe-Co-Ni 분말 소결 금속과 탄소강의 이종재료간 레이저 용접부의 결함형성기구 연구 (A Study on the Formation Mechanism of Discontinuities in $CO_2$ Laser Fusion Zone of Fe-Co-Ni Sintered Segment and Carbon Steel)

  • 신민효;김태웅;박희동;이창희
    • Journal of Welding and Joining
    • /
    • 제21권3호
    • /
    • pp.58-67
    • /
    • 2003
  • In this study, the formation mechanism of discontinuities in the laser fusion zone of diamond saw blade was investigated. $CO_2$ laser weldings were conducted along the butt between Fe base sintered tip and carbon steel shank with sets of variable welding parameters. The effect of heat input on irregular humps, outer cavity, inner cavity and bond strengh was evaluated. The optimum heat input to have a proper humps was in the range of 10.4~$17.6kJm_{-1}$. With increasing heat input, both outer and inner cavities were reduced. The outer cavity was caused by insufficient refill of keyhole, while inner cavity was caused by trapping of bubble in molten metal. The bubble came from sintered tip and intensive vaporization at bottom tip of the keyhole. A gas formation and low melting point element vaporization were not occurred during welding. We could not find any relationship between bond strength and amount of discontinuities. Because the fracture were occurred in not only sintered tip but also carbon steel shank due to hardness distributions.