• 제목/요약/키워드: Cavity Element

검색결과 314건 처리시간 0.02초

금인레이 와동의 폭경에 따른 응력분포와 변위에 관한 유한요소법적 연구 (A FINITE ELEMENT ANALYSIS ON STRESS AND DISPLACEMENT ACCORDING TO ISTHMUS WIDTH OF GOLD INLAY CAVITY)

  • 신강석;조영곤;황호길
    • Restorative Dentistry and Endodontics
    • /
    • 제18권2호
    • /
    • pp.395-411
    • /
    • 1993
  • The purpose of this study was to examine the clear concept of the designs for cavity preparations. Among the several parameters in cavity designs, profound understanding of isthmus width factor would facilitate selection of the appropriate cavity preparation for a specific clinical situation. In this study, the cavities were prepared on maxillary first premolar and filled with gold inaly. A two - dimensional model was composed of 1037 - node triangle elements. In this model, isthmus was varied in width at 1/4, 1/3 and 1/2 of intercuspal width and material properties were given for four element groups, i.e., enamel, dentin, pulp and gold. The 500N occlusal load varied in direction and it was examined using three types of load : concentrated load, divided load and distributed load. The models were also examined with empty cavities using the devided load and distributed load. These models were analyzed the displacement and strees distribution by the two - dimensional Finite Element Method. The results were as follows : 1. All experimental models which filled with gold inlay after cavity preparation were similar direction of displacement with control model under same load type. But in the models with empty cavities, as isthmus width was wider, the degree of displacement was increased at same load type. 2. Among the experimental models which were filled with gold inaly after cavity preparation, the model II showed the least stress concentration under concentrated load and divided load. But in the models with empty cavities, the model III showed the largest stress concentration and tooth fracture is expected regardless isthmus width. 3. All experimental models showed similar displacement pattern beneath restorative material under a concentrated load. In the models with empty cavities, a divided load resulted in a lingual displacement of the lingual cusp, but a distributed load resulted in a buccal displacement of the lingual cusp. In regard to the above results, the restored models were stronger than empty models in respect to the bending moment and tensile stress. The empty models are expected to fracture regardless isthmus width. The safest isthmus width was 1/3 of intercuspal distance, which showed the least stress concentration in respect to the effect of stress distribution.

  • PDF

Numerical analysis of sheet cavitation on marine propellers, considering the effect of cross flow

  • Yari, Ehsan;Ghassemi, Hassan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.546-558
    • /
    • 2013
  • The research performed in this paper was carried out to investigate the numerical analysis of the sheet cavitation on marine propeller. The method is boundary element method (BEM). Using the Green's theorem, the velocity potential is expressed as an integral equation on the surface of the propeller by hyperboloid-shaped elements. Employing the boundary conditions, the potential is determined via solving the resulting system of equations. For the case study, a DTMB4119 propeller is analyzed with and without cavitating conditions. The pressure distribution and hydrodynamic performance curves of the propellers as well as cavity thickness obtained by numerical method are calculated and compared by the experimental results. Specifically in this article cavitation changes are investigate in both the radial and chord direction. Thus, cross flow variation has been studied in the formation and growth of sheet cavitation. According to the data obtained it can be seen that there is a better agreement and less error between the numerical results gained from the present method and Fluent results than Hong Sun method. This confirms the accurate estimation of the detachment point and the cavity change in radial direction.

Experimental and numerical analysis of RC structure with two leaf cavity wall subjected to shake table

  • Onat, Onur;Lourenco, Paulo B.;Kocak, Ali
    • Structural Engineering and Mechanics
    • /
    • 제55권5호
    • /
    • pp.1037-1053
    • /
    • 2015
  • This paper presents finite element (FE) based pushover analysis of a reinforced concrete structure with a two-leaf cavity wall (TLCW) to estimate the performance level of this structure. In addition to this, an unreinforced masonry (URM) model was selected for comparison. Simulations and analyses of these structures were performed using the DIANA FE program. The mentioned structures were selected as two storeys and two bays. The dimensions of the structures were scaled 1:1.5 according to the Cauchy Froude similitude law. A shake table experiment was implemented on the reinforced concrete structure with the two-leaf cavity wall (TLCW) at the National Civil Engineering Laboratory (LNEC) in Lisbon, Portugal. The model that simulates URM was not experimentally studied. This structure was modelled in the same manner as the TLCW. The purpose of this virtual model is to compare the respective performances. Two nonlinear analyses were performed and compared with the experimental test results. These analyses were carried out in two phases. The research addresses first the analysis of a structure with only reinforced concrete elements, and secondly the analysis of the same structure with reinforced concrete elements and infill walls. Both researches consider static loading and pushover analysis. The experimental pushover curve was plotted by the envelope of the experimental curve obtained on the basis of the shake table records. Crack patterns, failure modes and performance curves were plotted for both models. Finally, results were evaluated on the basis of the current regulation ASCE/SEI 41-06.

개별요소법을 활용한 도로함몰 발생과 전개거동 예측 (DEM Simulation on the Initiation and Development of Road Subsidence)

  • 김연호;박성완
    • 한국지반공학회논문집
    • /
    • 제33권7호
    • /
    • pp.43-53
    • /
    • 2017
  • 최근 도시지역에서 빈번하게 발생하는 도로함몰은 지하에 생성된 동공으로 인해 지표면이 붕괴되는 현상을 의미한다. 지하 공간에서 동공 생성 과정과 생성된 동공이 도로함몰로 이어지는 현상을 이해하기 위해서는 동공의 형성 메커니즘을 명확히 이해할 필요가 있다. 따라서 본 연구에서는 실제 사례와 여러 모델 시험 결과를 분석하여 두 가지 가능한 메커니즘을 제시하였으며 각 메커니즘에 대해 개별요소법 기반의 수치해석 시뮬레이션을 수행하였다. 특히, 도로함몰 영향인자 중 토사 유출구의 크기와 지반의 간극비, 지반 구성 입자 형상의 영향을 확인하기 위한 수치해석을 통해 유출구 특성과 지반 조건에 따라 입자 손실과 지표 침하가 다르게 발생할 수 있음을 확인하였다. 또한, 불연속 침하 해석 결과로 본 연구에서 제시한 도표를 통해 동공의 지름과 심도를 통해 지반의 포화 시 거동을 예측할 수 있다.

핫엠보싱 충전공정에 관한 수치해석 (Numerical simulation of hot embossing filling)

  • 강태곤;권태헌
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.43-46
    • /
    • 2005
  • Micro molding technology is a promising mass production technology for polymer based microstructures. Mass production technologies such as the micro injection/compression molding, hot embossing, and micro reaction molding are already in use. In the present study, we have developed a numerical analysis system to simulate three-dimensional non-isothermal cavity filling for hot embossing, with a special emphasis on the free surface capturing. Precise free surface capturing has been successfully accomplished with the level set method, which is solved by means of the Runge-Kutta discontinuous Galerkin (RKDG) method. The RKDG method turns out to be excellent from the viewpoint of both numerical stability and accuracy of volume conservation. The Stokes equations are solved by the stabilized finite element method using the equal order tri-linear interpolation function. To prevent possible numerical oscillation in temperature Held we employ the streamline upwind Petrov-Galerkin (SUPG) method. With the developed code we investigated the detailed change of free surface shape in time during the mold filling. In the filling simulation of a simple rectangular cavity with repeating protruded parts, we find out that filling patterns are significantly influenced by the geometric characteristics such as the thickness of base plate and the aspect ratio and pitch of repeating microstructures. The numerical analysis system enables us to understand the basic flow and material deformation taking place during the cavity filling stage in microstructure fabrications.

  • PDF

축대칭 수중 운동체의 형상 변화를 고려한 초월공동 수치해석 (Numerical Analysis of Axisymmetric Supercavitating Underwater Vehicle with the Variation of Shape Parameters)

  • 박현지;김지혜;안병권
    • 대한조선학회논문집
    • /
    • 제55권6호
    • /
    • pp.482-489
    • /
    • 2018
  • Most of the numerical and experimental studies on supercavitating flows are focused on the cavitator only. However, the partial cavity growing into the supercavity is affected by the shape of the body placed behind the cavitator. In this paper, we develope a numerical method which is based on the boundary element method to predict supercavitating flow around three-dimensional axisymmetric bodies. We estimate the influence of the body shape on the supercavity growth. Here, we consider various parameters of the body such as cavitator shape, shoulder length and body diameter, and compare the results with the case of the cavitator only. In summary, it is found that the body may impede the cavity growth, the shoulder mainly affects the cavity length, and the supercavity occurring in the cone type cavitator is strongly influenced rather than that of the disk type cavitator.

수정 Gurson 모델을 이용한 균열성장 해석 (Analysis of crack growth by modified Gurson model)

  • 양승용;구병춘;김재훈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.702-709
    • /
    • 2004
  • Modified Gurson model (Gurson-Tvergaard-Needleman model) was used to analyze crack growth in M(T) and C(T) specimens. A commercial finite element code ABAQUS/Explicit is used to account for total failure of material point by cavity coalescence, and crack growth was simulated by finite element extinction. Crack growth resistance curve was obtained by calculating J-integral. Crack growth under residual stress was investigated.

  • PDF

OPTIMAL CONTROL PROBLEM OF NAVIER-STOKES EQUATIONS FOR THE DRIVEN CAVITY FLOW

  • Lee, Yong-Hun
    • Journal of applied mathematics & informatics
    • /
    • 제6권1호
    • /
    • pp.291-301
    • /
    • 1999
  • We study an optimal control problem of the fluid flow governed by the navier-Stokes equations. The control problem is formulated with the flow in the driven cavity. Existence of an optimal solution and first-order optimality condition of the optimal control are derived. We report the numerical results for the finite eleme수 approximations of the optimal solutions.

2급 와동의 복합레진 충전에 관한 유한요소법적 응력분석 (FINITE ELEMENT STRESS ANALYSIS OF A CLASS II COMPOSITE RESIN RESTORATION)

  • 송보경;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • 제20권2호
    • /
    • pp.627-643
    • /
    • 1995
  • The resistance to fracture of the restored tooth may be influenced by many factors, among these are the cavity dimension and the physical properties of the restorative material. The placement of direct composite resin restorations has generally been found to have a strengthening effect on the prepared teeth. It is the purpose of this investigation to study the relationship between the cavity isthmus and the fracture resistance of a tooth in composite resin restorations. In this study, MO cavity was prepared on the maxillary left first molar and then filled with composite resin. Three dimentional model with 3049 nodes and 2450 8-node blick elements was made by the serial photographic method and isthmus (1/4, 1/3, 1/2 and 2/3 of intercusplal distance between mesiobuccal cusp tip and mesiolingual cusp tip) was varied. Two types of model(B and R model) were developed. B model was assumed perfect bonding between the restoration and cavity wall and R model was left unfilled. A load of 1500N was applied vertically on the node from the lingual slope of the mesiobuccal cusp. The results were as follows : 1. There was a significant decrease of stress resulting in increase of fracture resistance in B model when compared with R model. 2. When it comes to stress distribution, the stress was concentrated in the facio-gingival line angle and the buccal side of the distal margin of the cavity in both Band R model. 3. With the increase of the isthmus width, the stress decreased in the area of the facio-gingival line angle, and increased in the area of facio-gingival line angle as well as the buccal side of the distal margin of the cavity in B model. In R model, the stress increased both in the area of facio-gingival line angle and the buccal side of the distal margin of the cavity, therefore the possibility of crack increased. 4. As the width of cavity increased, in B model, the direction of crack moved from horizontal to vertical on the facio-gingival line angle and the facio-pulpal line angle. In R model, the direction of the crack was horizontal on the facio-gingival line angle and moved from horizontal to the $45^{\circ}$ direction on the facio-pulpal line angle.

  • PDF

3차원 강소성 유한요소법을 이용한 환상압연공정중 형상결함의 예측 (Prediction of Defect Formation in Ring Rolling by the Three-Dimensional Rigid-Plastic Finite Element Method)

  • 문호근;정재헌;박창남;전만수
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1492-1499
    • /
    • 2004
  • In this paper, defect formation in ring rolling is revealed by computer simulation of ring rolling processes. The rigid-plastic finite element method is employed for this study. An analysis model having relatively fine mesh system near the roll gap is used for reducing the computational time and a scheme of minimizing the volume change is applied. The formation of the central cavity formation defect in ring rolling of a taper roller bearing outer race and the polygonal shape defect in ring rolling of a ball bearing outer race has been simulated. It has been seen that the results are qualitatively good with actual phenomena.